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Abstract

Expeditions in Neurocartography:

Mappings between Structural and Functional Pathways

in Arti�cial and Cognitive Neural Systems

by

Ann M. Hermundstad

Neural systems are inherently complex and dynamic in nature, exhibiting a vast

array of functions that range from low-level cellular interactions to high-level cognitive

processes. �ese functions are supported by anatomical interactions that span a similarly

wide range of scales, from the synapses between individual neurons to the extended �ber

pathways that traverse the brain. Both this structural architecture and the function that

it supports are continually interacting with and adapting to the external environment.

An understanding of both the capabilities and limitations of neural systems therefore

requires integrative approaches for assessing interactions between structural architecture,

dynamic functional activity, and environmental variability.

In this dissertation, we apply theoretical, computational, and data-driven techniques

to the study of both arti�cial and cognitive neural systems with the goal of mapping

between patterns of structural and functional connectivity across multiple scales of

resolution. �eoretical and computational analyses of small arti�cial networks provide

xvi



insight into the limitations of di�erent architectural motifs in facilitating the performance

of low-level functions, while data-driven analyses of large-scale human brain networks

provide insight the overlap of high-level functions supported by a common structural

architecture.

Computational neural networks provide a powerful framework in which to system-

atically probe the dependence of system function on underlying architecture. We use

neural networks to assess the dependence of competitive learning and memory processes

on structural variations. By comparing the performance of parallel and layered network

architectures during sequential tasks that require both acquisition and retention of infor-

mation, we identify tradeo�s between learning and memory processes that arise from

variations in underlying structure. During the task of supervised, sequential function

approximation, networks produce and adapt representations of external information.

Performance is evaluated by statistically analyzing the error in these representations

while varying the initial network state, the structure of the external information, and

the time given to learn the information. �e structure of the underlying error landscape

connects functional network performance to complexity in network architecture. We

employ sloppy model analysis [1] of parallel and layered network landscape minima

to isolate variations in the number, curvature, and eigenvector localization properties

of local minima within di�erent network landscapes. We �nd that these variations in

landscape structure give rise to tradeo�s in performance; these include the ability of

the network to maximize accuracy versus minimize inaccuracy and produce speci�c

xvii



versus generalizable representations of information. Parallel networks generate smooth

error landscapes with deep, narrow minima, enabling them to �nd highly speci�c rep-

resentations given su�cient time. While accurate, however, these representations are

di�cult to generalize. In contrast, layered networks generate rough error landscapes

with a variety of local minima, allowing them to quickly �nd coarse representations.

Although less accurate, these representations are easily adaptable. Importantly, the sys-

tematic analysis of performance in small neural network models provides insight into

the performance of larger composite systems in which statistical analyses of performance

would be intractable. Furthermore, the �nding that variations in parallel versus layered

network architectures give rise to measurable performance tradeo�s has implications for

understanding the behavior of a wide variety of natural and arti�cial learning systems

that share these structural features.

Given that the statistical analysis of computational network performance can inform

large-scale models of neural systems, we similarly ask to what extent the data-driven study

of the brain can in turn inform computational models of network function. Magnetic

resonance imaging enables the noninvasive mapping of both anatomical white matter

connectivity and dynamic patterns of neural activity in the human brain. We examine

the relationship between the structural properties of white matter tracts (structural

connectivity) and the functional properties of correlations in neural activity (functional

connectivity) within 84 healthy human subjects both at rest and during the performance of

attention- and memory-demanding tasks. We show that structural properties, including
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the length, number, and spatial location of white matter tracts, are predictive of and can be

inferred from the strength of resting-state and task-based functional interaction between

brain regions. Importantly, we show that these relationships are both representative of the

entire set of subjects and consistently observed within individual subjects. �e observed

links between structural and functional pathways in the human brain provide insight

into the development of large-scale neural architecture and the functional implications

of disruptions to this architecture.

�is direct analysis of connectivity uncovers relationships between structural and

functional interactions without invoking knowledge of the speci�c brain regions involved

in these interactions. By incorporating this additional knowledge into our analysis, we

identify structurally-mediated interactions between putative task-related functional net-

works that both support and distinguish between cognitive states. We build upon previous

studies that have identi�ed resting-state functional networks, denoted task-positive (TP)

and task-negative (TN) networks, that are strongly anticorrelated at rest but also involve

regions of the brain that routinely increase and decrease in activity during attention

processes, suggesting that task-based function is encoded in resting-state activity. By

identifying regions within our brain networks that have been implicated in TP and TN

networks, we investigate the structural mechanisms that support a functional overlap

between resting-state and task-driven activity. We show that strong interactions within

and between TP and TN networks, as quanti�ed by an increase in the relative num-

ber of anatomical connections that support strong functional correlations, distinguish

xix



resting-state, attention-state, and memory-state brain activity. We map di�erences in

these interactions to a phase-like space in which brain states are characterized by the

relative contribution from di�erent network interactions. We probe the features of this

phase space across subjects and �nd sets of ordered relationships between cognitive

states. �is order enables us to group individual based on their similarity in phase space,

and we link groupings with abnormal phase relationships to signi�cant deviations in

behavioral performance during attention and memory tasks. �is suggests that further

characterization of this phase space may help identify structural and functional signatures

of altered cognitive states.

Together, these �ndings uncover robust links between structural architecture and

functional activity in small-scale arti�cial network models and in large-scale human

brain networks, which together inform and constrain intermediate-level descriptions of

structural and functional interactions. �e development of integrative, multiscale de-

scriptions of neural system architecture is crucial for understanding both the capabilities

and the constraints imposed by this architecture.
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Chapter 1

Introduction

“�ere is no scienti�c study more vital to man than the study of his own

brain. Our entire view of the universe depends on it."

–Francis H. C. Crick, from Scienti�c American, 1979

�e study of the brain is considered by many to be the next scienti�c frontier, the

great unknown. Made up of more cells than there are stars in our galaxy, exploration of

the vast expanses and deep corners of the brain has been compared to the exploration

of space. Just as the advent of space travel and powerful telescopes has enabled us to

chart the topography of the universe, the speed with which new technological methods

are being developed is drastically accelerating our understanding of the topography of

the brain, and data is being collected faster than scientists can examine it. However, we

are still far from understanding how the intricacies of cognitive function arise from the
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cellular building blocks of the brain.

�e mere attempt to study the brain raises philosophical questions about its capa-

bilities and limitations. With a similar philosophical leaning as Francis Crick, Edward

O. Wilson has said, “Overall, the human brain is the most complex object known in the

universe–known, that is, to itself.” Not only does our view of the universe depend on an

understanding of the lens through which it is seen, our ability to understand this lens is

constrained by the machinery that we use to study it–namely, the brain itself.

Yet, the desire to understand the brain is ever compelling and o�en stems from a

deep philosophical curiosity about our own origins. What are we? And perhaps more

importantly, how are we what we are? As Hippocrates once said, “Men ought to know

that from the brain, and from the brain only, arise our pleasures, joy, laughter and jests,

as well as our sorrows, pains, griefs, and tears.” How does something so esoteric as joy

arise from something so physical as a cell?

Early investigations of the brain were driven by a desire to �nd the seat of the soul,

with the idea that consciousness must arise from a transfer of information somewhere

within the body. �is search begged the questions: what is this information, how is being

transferred, where is it going, and why? Even today, we are still seeking answers to these

fundamental questions.
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1504 (Da Vinci): detailed anatomy of ventricles

1649 (Descartes): develops hydraulic theory to describe re�exes*

1793 (Galvani): discovered electrical nature of nerves in muscle tissue

1808 (Gall): develops object method to relate personality to skull 
morphology*

1809 (Bell): mapped sensory nerves from brain to end organs

1870  (Hitzig and Fritsch): localizated motor responses via electrical 
stimulation of brain

1909 (Brodmann): mapped 52 cortical regions based on cell size, 
shape, and tissue structure

1848 (Gage): survived a tamping iron driven through his skull

1861 (Broca): identi�ed frontal lobe lesions that impaired speech 
vocalization

1837 (Purkinje):  �rst microscope images of neural cell 
bodies in cerebellum

1863 (Dieters): microscope image of neuron with axon 
and dendrites

1873 (Golgi): staining of networks of  neurons in hippocampal tissue 
(believed this re�ected a di�use network with uni�ed functionality*)

1888 (Cajal): identi�ed (via Golgi staining) di�erent types
of neurons in chick cerebellum

A Brief Visual History of  Early Neuroscience

1809 1870 1909184817931504 1649 18611808

1888187318631837

Upper PanelsLower Panels

*ideas that have since been discredited

Figure 1.1: Milestones in Neuroscience Research. Lower panels describe signi�cant contri-
butions to the study of large-scale anatomical and functional properties of the brain, while the
upper panels describe signi�cant contributions to the study of small-scale neuronal anatomy and
function.
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1.1 Mapping the Nervous System

�roughout the course of history, scientists have turned to mapmaking as a means of

linking the anatomical structure of the body, such as organs, tissues, and bones, to its

functional capabilities, such as the movement of a limb, the propensity for good health,

or the formation of a thought. In seeking the anatomical foundations of our conscious

beings, many candidate organs were proposed as housing the “soul”, including the heart,

the pineal gland, and the ventricles of the brain. Similarly, many types of information

were proposed to mediate the interactions between the soul and the body, including

humors, animal spirits, and liquids. However, it wasn’t until the 1700’s that muscular

tissue was found to have electrical properties, and it wasn’t until the late 1800’s that these

electrical properties were linked to the brain. We now know that this electricity is the

currency of exchange throughout the entire nervous system, and the brain houses the

machinery responsible for controlling this exchange.

Even armed with the knowledge of electricity in the body, the nature of electrical

transmission was unknown for many years. What and where were the power plants

and wires responsible for the production and exchange of electricity? Experiments in

the early 1800’s were able to anatomically trace nerves from the brain to di�erent end

organs, such as the face or the arm, con�rming that there were hard-wired electrical

connections between the brain and the body. Experiments in the 1870’s further showed

that the electrical stimulation of the brain could elicit motor responses from di�erent

parts of the body, providing a direct link between the brain as a controller and the body
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as a recipient of this control.

Concurrent with the study of these large-scale electrical connections, the invention

of the compound microscope in the 1800’s enabled scientists to visualize the small-scale

properties of these large-scale connections. When examined at small scales, neural tissue

was found to contain localized cells with extended projections. �ere was much debate

as to the nature of these cells and their ability to function as discrete units, and many

believed that they comprised a di�use net that supported a single consciousness. It

wasn’t until the end of the 19th century that scientists began to prescribe to the “neuron

doctrine”, which stated that the discrete extended cells found in brain tissue, to be called

neurons, were the basic unit of the nervous system from which all other structures were

built. Information, in the form of electrical signals, traveled in one direction through

the neuron, from the input projections (called dendrites) through the cell body to the

output projections (called axons). We now know that neurons exhibit a range of di�erent

morphologies that enable the exchange of electrical signals between one another.

Two fundamental and related questions arose from the simultaneous studies of the

large-scale properties of the brain and the small-scale properties of neurons: how is the

brain built from individual neurons, and where does functionality lie? If we were to look

for a memory, would we �nd it in a single cell, in a chunk of brain tissue, or distributed

throughout the brain?
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1.2 Structural Organization and Functional Localization

�e study of structural organization, and therefore the function that it supports,

has historically been limited in scope to speci�c brain regions or localized anatomical

structures. �e characterization of structural properties, such as the physical shape, size,

and location of a cell or organ, has evolved signi�cantly over the past several hundred

years, from the �rst wax mold of ventricles constructed by Da Vinci in 1504 to the

mapping of nerves by Bell in 1809 to the description of neuron morphology by Cajal in

1888 to the characterization of cortical cell types by Brodmann in 1909. �e identi�cation

of such localized structures suggested that function was similarly localized. �e di�culty

remained, however, in linking speci�c structural signatures to their functional purpose.

Due to the invasiveness of experimental techniques, early studies of healthy brain

function were limited to animals. For example, the experiment that �rst linked electricity

in the brain to movement in the body, conducted in the late 1800’s, identi�ed localized

regions within a thin strip of brain tissue that controlled involuntary muscle contractions

in the legs of dogs. We now know that this mapping between the brain and the body can

be extended to a wide range of motor and somatosensory responses, whereby the electric

stimulation of a localized brain region can elicit a speci�c taste or the visualization of

di�erent colors.

In comparison, studies of human brain function were o�en derived from cases in

which functionality was disrupted. In one notable 1848 case study, railroad worker

Phineas Gage survived an explosion in which a tamping iron was driven through his skull.
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Visual Neglect Split Brain

language:
says “bird”

motor:
draws “�ower”

Functional Consequences of Structural Disruptions

Figure 1.2: Functional Consequences of Structural Disruptions. Visual neglect (le�), o�en
the result of a lesion to the right parietal hemisphere, can cause altered or absent perception in
the le� visual �eld. Split brain syndrome, a result of a severing of the corpus callosum linking the
two cerebral hemispheres, can cause miscommunication between language and motor centers.
Objects in the le� and right visual �elds will be processed by the right and le� hemisphere. As
language processing is housed in the le� hemisphere and right-handed motor control is housed
in the right hemisphere, patients presented with two images (one each in the le� and right visual
�elds) will say they see one image but will draw the other image.
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Within minutes of the accident, Gage was remarkably able to speak and walk. However,

friends reported that his demeanor was altered so severely that he was “no longer Gage.”

We now know that the region of the brain a�ected by Gage’s accident is related to the

control of temperament. In 1861, Paul Broca reported that stroke-induced lesions of a

localized region in the le� frontal lobe of the brain caused near complete loss of language

vocalization, but not of language comprehension, noting that one of his patients could

only speak the word “tan.” Shortly a�er, Carl Wernicke reported that lesions to a localized

region in the superior temporal gyrus altered language comprehension, observing that

patients were able to vocalize words with normal rhythm but were unable to construct

meaningful sentences from these words. More complex neurological phenomena that

altered visuospatial perception, such as visual neglect and split brain syndrome (Figure

1.2), were similarly linked to structural disruptions between brain regions.

�e study of higher-order cognitive processes, such as learning and memory, contin-

ues to pose signi�cant challenges, even today. Many now believe that these higher-order

functions arise from low-level interactions between localized sensory and motor func-

tions, and a signi�cant amount of current research is aimed at identifying how di�erent

brain regions interact with one another to perform coordinated functions. �e question of

structural and functional localization, restated in the context of current knowledge, could

ask: how is diverse functionality, such as the ability to learn and remember information,

encoded within single neurons, activity patterns across many neurons, or interactions

between whole brain regions?
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1.3 Visualizing the Topography of the Brain

A detailed understanding of neural structure and function has historically been

limited by an inability to see the brain. Both animal and human dissections have, at

various times and in certain cultures, been deemed unethical. If performed, they were

limited to postmortem dissections, and therefore any theories of functionality were

merely speculative. �e invention of the microscope signi�cantly advanced neuroscience

research and solidi�ed the cellular basis of the nervous system. Even then, neuron

functionality could not be measured directly; rather, the direction of information �ow

through a single neuron was remarkably inferred from the observed organization of

groups of neurons. Similarly, many large scale signatures of brain function were inferred

by tracing the neurological e�ects of electric stimulation. It wasn’t until the late 1800’s

that electrical activity was measured from the brain, rather than directed to the brain, a

technique that formed the basis of modern neuroimaging.

Although we are still limited in the degree to which we can directly interact with

the brain, recent advances in imaging techniques have accelerated our understanding of

its structural architecture and the functionality that this architecture supports (Figure

1.3).1 For example, electron microscopy has traced, in exquisite detail, the morphological

features of and the cellular machinery packed within individual neurons. Two-photon

microscopy further enables the imaging of networks of neurons within tissue up to 1mm

in depth (for comparison, the human cortex is 2-4mm in thickness). Local functional
1�e two-photon microscopy image shown in Figure 1.3 is used with permission from �omas J.

Deerinck (http://www.microscopyu.com/featuredmicroscopist/deerinck/deerinckgallery.html).
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 Modern Imaging Techniques

Figure 1.3: Highlights from Modern Imaging Techniques. From top (neuron scale) to bottom
(whole brain scale) and from le� to right: Images of synapse taken via electron microscopy,
Purkinje neurons taken via two-photon microscopy, functional activity taken via fMRI, brain
tissue taken via standard MRI, white matter pathways taken via DTI, and blood vessels taken via
angiography.
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activity can similarly be measured from microelectrode array recordings of the electrical

signals generated by neurons or local neural circuits. Together, these techniques for

assessing neuron-level properties are direct at the cost of being invasive, and they are

therefore largely limited to animal studies.

In comparison, noninvasive neuroimaging techniques do not provide the spatial and

temporal resolution of single-cell recordings, but they instead enable the indirect mapping

of structural and functional properties on a large scale across the entirety of the brain

(see Chapter 4 for further discussion). Magnetic resonance (MR) techniques now enable

the noninvasive measurement of a wide range of structural and functional properties.

Techniques such di�usion tensor imaging can be used to visualize the physical pathways

mapped out by large bundles of neurons, which act as transmission cables between

distant regions of the brain. MR techniques can similarly measure local changes in energy

consumption, which serve as an indirect measure of slow changes in local neural activity.

Techniques such as electroencephalography (EEG) can measure changes in neural activity

over shorter timescales by recording the electrical signals that the brain transmits through

the skull, and when medically warranted can be applied invasively to record directly from

the cortical surface of the brain.

1.4 Multiscale Models of Brain Connectivity

Measurements drawn from this diverse range of modern imaging techniques have

shown that the brain exhibits numerous structural motifs exhibited across a range of
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spatial scales, from the complicated morphological structure of individual neurons to the

large scale structural characteristics of whole brain regions. Similarly, the brain generates

a wide range of dynamical responses, from the electrical signals produced by a single

neuron to the �uctuations in energy consumption exhibited by a patch of brain tissue.

One of the fundamental problems faced by modern neuroscience is the need to connect

anatomical and functional interactions across this wide range of scales. Phrased another

way, we can ask, “given a pile of 10 billion neurons, how would we build a brain?”

�is question has puzzled scientists and engineers alike. Beyond interest in under-

standing its biological properties, it has been recognized for many years that the brain is

capable of amazingly complex computations, suggesting that we should look to the brain

for inspiration in designing new technologies. Such ideas sparked the neural network

revolution in the 1950’s, the aim of which was to design neurally-inspired machines

capable of biologically complex functionality.

What are the design principles that would underlie such a machine, and are these the

same principles that have guided the evolution of the human brain? Like �ngerprints,

no two brains are alike. Moreover, the brain is dynamic, not only in function but also in

structure. Connections between brain regions are continually building and rebuilding

themselves over the course of a lifetime, from the trimming of connections in early

childhood to the massive regrowth of connections in adolescence to degradation of

connections with age. Even the process of learning a new skill is linked to the �ne tuning

of structural properties. How can the same structural materials support such variable
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functionality, and how in turn can stable functionality be maintained when the structure

on which it rests is changing?

Many have suggested that answers to these questions will require a detailed connec-

tome of the human brain, a map that describes the location and function of each cell. To

date, such a map has only been constructed for C. elegans, a tiny worm whose functional

repertoire spans a few con�gurations of wiggles. Even given the recent advances in

imaging techniques, we are far from being able to reconstruct the structural features in-

termediate between neurons, local neural circuits, and whole regions of the human brain.

We are similarly far from being able to reconstruct the dynamical features intermediate

between local neuron signals, large-scale brain wave oscillations, and complex cognitive

functions such as language and memory. Furthermore, the wealth of data that is being

generated from experimental measurements of brain structure and dynamics will require

parallel advances in the computational techniques needed to analyze this data.

Yet, it is exactly this integration of information across spatial and temporal scales

that will help us understand how the brain operates. Much work to date has focused on

structural and functional specialization. However, the belief that high-level cognitive

functions are supported by interactions between many di�erent brain regions suggests

that our focus should shi� toward identifying integrative approaches for understanding

interactions between anatomically and functionally distinct regions. To do this requires

a combination of both experimental and computational techniques to simultaneously

measure the physical properties of neural systems and explore the implications of varia-
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tions in these properties. Furthermore, the combined study of large-scale and small-scale

neural systems can provide insight into the capabilities and constraints that di�erent

scales impose on one another, from the limited dynamic range of individual neurons to

the e�ciency of information transfer between whole brain regions.

1.5 Outlook

Motivated by the need to develop such integrative approaches for the study of neural

systems, this thesis aims to identify mappings between speci�c structural features, such

as the patterns of connectivity between neurons or brain regions, and the functionality

that they support, such as the ability to learn, adapt to, and remember information. Not

only does this provide insight into the architectural and functional design principles that

constrain neural systems, it also provides insight into the implications of disruptions to

this architecture.

In what follows, we investigate relationships between the structural organization

and the functional capabilities of neural systems. We combine both computational and

experimental techniques to isolate speci�c structural features that di�erentially impact

functionality on a small scale, within computational networks of neurons, and on a large

scale, between localized regions of the human brain.

In Chapters 2 and 3, we use computational models to investigate interactions between

learning and memory processes in small network systems. Computational models have

the advantage of enabling us to systematically vary the structure of the network, as
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described by the pattern of connections between neurons, and the functionality of the

network, as described by its ability to accurately perform learning and memory tasks.

�is enables us to identify speci�c structural features that support a balance between

learning and memory processes. We show, in Chapter 2, that variations in connectivity

patterns give rise to tradeo�s in the ability of a network to retain old information while

learning new information. In Chapter 3, we investigate extensions of this work across

variations in internal network structure and external environmental structure.

In Chapters 4, 5, and 6, we use neuroimaging data to assess human brain networks.

We investigate relationships between large scale structural features, as measured by the

properties of bundles of neurons in the brain, and functional interactions, as measured

by the strength of correlated �uctuations in energy consumption. By distinguishing

between neural activity measured in di�erent cognitive states, we identify structural

features that support the performance of di�erent cognitive functions. We show that these

relationships are representative of many subjects and are consistently maintained within

individual subjects. In Chapter 5, we assess these structure-function relationships across

variations in our analysis techniques, and we discuss methodological considerations for

robustly relating structure and function across a large sample of subjects. In Chapter 6,

we introduce information about the anatomical brain regions involved in these structure-

function interactions. We show that structurally-mediated interactions between putative

task-related brain regions both supports and distinguishes between di�erent cognitive

states. We further show that the space of interactions is constrained, such that individual

15



subjects exhibit a reduced subset of all possible interactions. By quantifying the features

of this reduced subset, we identify regions of interaction space that may be predictive of

altered behavioral performance during attention and memory tasks.

Together, the work presented in this thesis develops multimodal approaches for

mapping structural and functional pathways across a wide range of scales in neural

systems. �ese approaches, and the observed structure-function relationships gleaned

from them, provide insight into the architectural design components that can support,

constrain, and distinguish between di�erent functions in a wide range of information

processing systems.
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Chapter 2

Learning and Memory in Neural

Network Models

“�e brain is a monstrous, beautiful mess. Its billions of nerve cells–called

neurons–lie in a tangled web that displays cognitive powers far exceeding

any of the silicon machines we have built to mimic it."

–William F. Allman, from Apprentices of Wonder: Inside the Neural Network Revolu-

tion, 1989

2.1 Introduction

Understanding how neuron-level interactions support higher level functionality is

a outstanding problem in the �eld of neuroscience. Network level models provide one

approach for understanding how interactions between di�erent neural components
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interact across varying levels of resolution to support complex functionality such as

learning and memory.1

Learning, the assimilation of new information, and memory, the retention of old

information, are competing processes; the �rst requires �exibility and the second stability

in the presence of external stimuli. Varying structural complexity could uncover tradeo�s

between �exibility and stability, particularly when comparing the functional performance

of structurally distinct learning systems. We use neural networks as model learning

systems to explore these tradeo�s in system architectures inspired by both biology and

computer science, considering layered structures like those found in cortical lamina [3]

and parallel structures such as those used for clustering [4], image processing [5], and

forecasting [6]. We �nd inherent tradeo�s in network performance, most notably between

acquisition versus retention of information and between the ability of the network to

maximize success versus minimize failure during sequential learning and memory tasks.

Identifying tradeo�s in performance that arise from complexity in architecture is crucial

for understanding the relationship between structure and function in both natural and

arti�cial learning systems.

Natural neuronal systems display a complex combination of serial and parallel [7]

structural motifs which enable the performance of disparate functions [8, 9, 10, 11].

For example, layered [3] and hierarchical [12] architectures theoretically important for
1Portions of this chapter originally appeared in Hermundstad et al., “Learning, memory, and the role

of neural network architecture,” PLoS Comput. Biol., 2011 [2]. Reproduction is in accordance with PLoS
Terms of Use (http://www.ploscompbiol.org/static/terms.action) and the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.5/).
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sustained limited activity [13] have been consistently identi�ed over a range of spatial

scales in primate cortical systems [14]. Neurons themselves are organized into layers, or

“lamina,” and both intra-laminar [15] and inter-laminar [16] connectivity di�erentially

impact function. Similarly, information processing systems developed by technological

innovation rather than natural evolution have structures designed to match their func-

tionality. For example, the topological complexity of very large integrated circuits scales

with the function to be performed [17]. Likewise, the internal structure of arti�cial neural

networks can be carefully constructed [18] to enable these systems to learn a variety

of complex relationships. While parallel, rather than serial, structures are appealing in

arti�cial neural networks because of their e�ciency and speed, variations in structure

may provide additional bene�ts or drawbacks during sequential tasks.

�e dependence of functional performance on structural architecture can be sys-

tematically examined within the framework of neural networks, where the complexity

of both the network architecture and the external information can be varied. In this

study, we evaluate the representations of information produced by feedforward neural

networks during supervised, sequential tasks that require both acquisition and retention

of information. Our approach is quite di�erent from studies in which large, dense net-

works are given an extended period of time to produce highly accurate representations

of information (e.g. [19, 20]). Instead, we investigate the links between structure and

function by performing a statistical analysis of the error in the representations produced

by small networks during short training sessions, thereby identifying mechanisms which
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underlie tradeo�s in performance. Our work therefore has important implications for

understanding the behavior of larger, more complicated systems in which statistical

studies of performance would be impossible.

In what follows, we provide a brief introduction to the mathematical and computa-

tional techniques used to model neurons and networks of neurons.2 We then discuss

the parallel application of arti�cial neural networks to the study of highly nonlinear

computational problems. �ese two �elds, biological and arti�cial neural network mod-

eling, stemmed from the same realization that networks of neurons perform detailed

computations that underlie complicated cognitive processes. Here, we use arti�cial neural

networks to study the biologically-motivated problem of learning and memory interac-

tion. �is study takes advantage of the computational machinery provided by arti�cial

neural networks while being simultaneously sensitive to their biological underpinnings

and their ability to provide a simpli�ed description of biological processes.

In relating learning and memory process, we assess the extent to which network

architectures di�er in their ability to both learn and retain information. Across a range of

network architectures, we quantify the best, worst, and average performance achieved

during sequential tasks that vary in both their duration and complexity. We consider the

adaptability of these networks to variable initial states, thereby providing insight into the

structure of functional error landscapes. Finally, we explore how landscape variations

that arise from structural complexity lead to di�erences in performance.
2For a great reference on modeling neural systems, see Dayan and Abbott’s book “�eoretical Neuro-

science: Computational and Mathematical Modeling of Neural Systems” [26]
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2.2 Modeling Biological Neurons

Neurons are specialized cells that communicate via the exchange of electrical pulses.

�ese pulses are transmitted throughout the brain and body to support functions ranging

from a simple �nger tap to the complex recollection of memories.

�e extended morphological structure of a neuron consists of dendrites, an axon and

axon terminals, and a cell body. �e cell membrane is potentiated such that the inside of

the cell rests at a lower voltage potential than does the outside of the cell, with a resting

value near -70mV. �is potential �uctuates in responses to changes in local ion content,

such as sodium (Na+) and potassium (K+) content, regulated by ion channels in the cell

membrane.

�e dynamical building block of neural communication is the action potential, a

voltage spike produced by a nonlinearity in chemical dynamics. When the membrane

potential of a neuron rises above a certain threshold (near -50mV), chemical nonlineari-

ties drive a rapid increase (depolarization) followed by a rapid decrease and overshoot

(hyperpolarization) in the membrane potential. In undergoing this nonlinear process,

the neuron is said to have “�red” an action potential. �e period of hyperpolarization

following the action potential prevents the neuron from �ring a second time within a

given window of time. �e pattern of action potential spikes generated by and exchanged

between neurons serves as the basic mode of communication in the brain.

Action potentials are transmitted between neurons across synapses, which can be

direct electrical contacts or indirectly mediated via the exchange of chemical neurotrans-
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Figure 2.1: Biological Neurons. Neurons consist of a cell body (soma) that collects inputs from
other neurons via extended input projections (dendrites) and sends output signals to other neurons
along extended output projections (axons). A voltage di�erence exists across the membrane of
the neuron, such that the inside of the neuron rests at a lower potential than does the surrounding
medium (resting potential V ∼ −70mV ). Fluctuations in the membrane potential can induce
nonlinear responses that trigger a sharp increase (depolarization) and decrease with overshoot
(hyperpolarization) of the membrane potential, a�er which the neuron is said to have �red an
action potential. Series of action potentials, called spike trains, encode the information transmitted
between neurons. To enhance signal propagation, axons are coated with an insulating layer of
myelin, or sheath. Signals are exchanged across axon-dendrite junctions, called synapses. �ese
junctions can be chemical in nature, transmitting action potentials indirectly via the exchange
of neurotransmitters, or they can be electrical in nature, enabling the action potential to jump
between adjacent membranes.
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mitters. Neurons synapse from axon terminals to dendrites, such that a signal passes

from the axon terminal of one neuron to the dendrite of a second neuron.

�e �eld of computational neuroscience concerns itself with the mathematical and

computational modeling of the electrical and chemical properties of action potential

generation, the signal propagation along the extended morphological structure of the

neuron, and the network level dynamics produced by the exchange of these electrical and

chemical processes. We �rst provide an overview of the methodological considerations

taken for modeling individual neurons, and we return in the next section to discuss the

extension of these considerations to network-level models.

2.2.1 Single Neurons

Models of individual neurons can vary signi�cantly in their complexity to describe a

range of complicated conductance and morphological properties. One of the �rst models

to describe single neuron dynamics, constructed without a mechanistic description of

action potential generation, was the integrate-and-�re model. �is model employs a

di�erential equation to describe the dynamics of the sub-threshold membrane potential

in terms of a single leakage current, and it records a delta function spike whenever the

potential exceeds a threshold value (a�er which the potential is reset to a sub-threshold

value). A more biophysically resolved model was later constructed by Hodgkin and

Huxley (for which they were awarded a Nobel Prize in Physiology), which describes

�uctuations in the membrane potential in terms of Na+ and K+ currents (in addition
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to the integrate-and-�re leakage current). With the appropriate biophysical parameter

choices, this model reproduces the dynamics of action potential generation.

In addition to their complex conductance and electrical properties, neurons exhibit

complex morphological structures. Single compartment models treat the extended struc-

ture of a neuron as a single unit whose properties are described by single values of

membrane potential and membrane currents. Multi-compartment models, in compari-

son, treat the extended morphological structure of a neuron and describe the propagation,

decay, and delay of signals along the length of an axon or dendrite.

Together, these models are very useful for describing the behavior of single neurons.

However, a typical cortical neuron may synapse with thousands of other neurons, and

local circuit activity arises from the sum of these interactions. Network level models are

therefore very useful for understanding how individual neuron properties support local

circuit dynamics.

2.2.2 Networks of Neurons

A typical neural network model can be constructed by wiring together the model

�ring neurons discussed above (such as the integrate-and-�re or Hodgkin-Huxley model

neurons). While network models of this nature provide highly resolved descriptions

of single-neuron dynamics, they are computationally costly. Lower resolution models

can be constructed by describing the rate of action potential generation rather than the

precise timing of individual action potentials. Such “�ring-rate” models, which are less
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computationally costly and more naturally support the inclusion of stochasticity in action

potential generation, are the focus of the present work.

For tractability, network models o�en use single-compartment neurons (nodes) wired

together via weighted synapses (connections). In a �ring-rate model, the functionality of

the neuron is described by a transfer function that maps the relationships between the

input (received at the dendrites) and output (passed along the axon) �ring rates of the

neuron. �e weighting of the synapse describes the strength of interaction between two

neurons in terms of the likelihood that the �ring rate of the presynaptic neuron will elicit

a response in the postsynaptic neuron. Synapses are characterized as either excitatory or

inhibitory, which describes the tendency of the postsynaptic �ring rate to respectively

increase or decrease with increasing presynaptic �ring rates.

Network models are typically characterized as either feedforward or recurrent, which

speci�es the direction of information �ow through the network. Feedforward network

models operate as their name would suggest, with information passing through the

network in one direction without recurrent or feedback projections. In this case, the

output of the network is well de�ned, and it is straightforward to track the change activity

in moving from the input to the output. Recurrent networks, in comparison, allow for the

possibility of recurrent or feedback projections. Recurrent networks can produce much

more complex dynamics, but their behavior is more di�cult to interpret because the

information �ow is not linear. Furthermore, there is no straightforward de�nition of the

network output, and one instead tracks network dynamics in response to the perturbation
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Figure 2.2: Neural Network Representation of Neurons. Neural networks models commonly
represent neurons as single nodes in a network and synapses between neurons as connections
between nodes. In �ring-rate models, the signal passed between nodes represents a steady-state
�ring rate. Nodes perform a transfer function operation on the collected input signals and pass
this output to other nodes in the network. �e strengths of connection weights then alter the
sensitivity of this transfer function (shown here as a sigmoidal function). Together, this neural
network construction enables the representation of external information through the mapping of
a set of input values onto a set of output values.
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of local network properties.

Network models are particularly useful for studying dynamic processes such as de-

velopment, learning, and memory. Synaptic plasticity, by which the e�cacy of synapses

changes in response to the local activity in the circuit, is believed to underlie these pro-

cesses. Within a network model, synaptic plasticity is implemented via learning rules that

describe the change in strength of a network connection in response to local network

activity. One such type of biologically realized plasticity, Hebbian plasticity, strengthens

the synapse between two neurons if the �ring of one neuron is correlated with the �ring of

the other. Hebbian plasticity has been linked to the activity-dependent potentiation and

depression (increased or decreased �eld potential) of neurons. Non-Hebbian plasticity,

thought to be important for learning and developmental processes, alters the strength

of the synapse based on either the pre- or post-synaptic �ring rates, rather than on the

correlation between the two.

�e implementation of synaptic plasticity via learning rules enables the use of neural

networks for the study of various learning processes. Within the context of neural network

models, learning can be understood as the process by a which a network trains itself to

produce an internal representation, stored within local dynamics or connection strengths,

of some external information. Learning studies are typically classi�ed into three types,

unsupervised, reinforcement, and supervised, based on the degree of feedback that

the network receives from the external environment throughout this training process.

During unsupervised learning, the response of the network to input information is

27



SupervisedReinforcementUnsupervised

no feedback indirect feedback:
rewards (+) 

punishments (    )

direct feedback:
exact error E
E ~ ( y - f (x) )2

trains on input x
with no feedback

trains on input/output (x, y) pairs
with indirect feedback

trains on input/output (x, y) pairs
with direct feedback

f(x)f(x)

(b)(a) (c) (    )(    )(    )

(+)

(    )

better
solution

worse
solution

exact
error E

(    )

 x  x  x

 y y y

Figure 2.3: Types of Learning in Neural Network Models. Learning is typically categorized
into three types, unsupervised, reinforcement, and supervised learning, depending on the degree
of feedback provided by the external environment. We use use the example of one-dimensional
function approximation to illustrate these three learning types. In unsupervised learning (le�
column), the network is trained on inputs alone, and it produces a representation of those inputs
based on internal plasticity rules without feedback on the accuracy of such a representation.
In reinforcement learning (middle column), the network trains on input-output pairs, and it
receives indirect feedback via rewards (+) and punishments (−) regarding the accuracy of its
representation of those input values. If the internal representation produced by the network
is moving closer to the desired output (marked by the proximity of purple dotted line to the
black points), the network receives a reward, and if the representation is moving away from the
desired output (marked by the proximity of the red dotted line to the black points), the network
received a punishment. In supervised learning (right column), the network trains on input-output
pairs, and it receives direct feedback E (vertical red lines) regarding the inaccuracy of its internal
representation of the input values.
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controlled solely by internal network structure and dynamics, with no feedback from

the environment regarding the accuracy of this response. In reinforcement learning,

the network receives feedback in the form of rewards and punishments that inform the

network of its relative success or failure in producing a desired input-output relationship.

Finally, in supervised learning, the network receives direct feedback about the degree

to which it is accurately representing a speci�c input-output relationship. In the second

two cases, the “environment” can be an abstract teacher (as in the case of arti�cial neural

network studies, discussed in the following section), or it can be a biologically realistic

“teacher network” that provides dynamic feedback to the “pupil network” during training.

2.3 Arti�cial Neural Networks and the Perceptron

In addition to their biological signi�cance, it was realized that neurons were very

successful in their ability to perform computational functions, an observation that led

to the creation and rapid growth of the �eld of arti�cial neural networks ([21, 22]).

Arti�cial networks were constructed based on coarse simpli�cations of biological neurons,

with neurons represented as nodes and synapses as connections between nodes, for the

performance of complex computational tasks. As in biologically-inspired networks,

neuron functionality is approximated by a transfer function that maps the input (received

at the dendrites) to the output (passed along the axon) of the neuron. Connections

between nodes, which can be undirected, unidirectional, bidirectional, can be modi�ed

in strength to alter the input-output relationship produced by the network.
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Figure 2.4: �e Perceptron as a Linear Classi�er. �e single perceptron, one of the �rst and
simplest examples of a feedforward neural network, is a binary linear classi�er. It is able to solve
the linearly-separable AND problem by �nding the equation for a line that separates an output of
1(produced by an input of (1,1)) from the remaining outputs of 0 (produced by inputs of (0,0),
(1,0), and (0,1)). However, the perceptron cannot solve the XOR problem, because there is no
linear classi�cation boundary that well separates an output of 0 from an output of 1. Multi-layer
perceptron networks, however, can produce nonlinear classi�cation boundaries and can therefore
solve both the AND and the XOR problem (in addition to many other, highly nonlinear problems).
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Although biological and arti�cial neural networks share many common features

(given that the latter was inspired by the former), arti�cial neural networks are typically

constructed for the performance of highly nonlinear computational problems, and they

need not conform to biological constraints. Given the wide range of tunable proper-

ties, neural networks can be designed to perform very speci�c computational functions

through controlled variations in network connectivity, the weighting of network connec-

tions, and the transfer function of individual nodes (see Figure 2.6 for examples of neural

network applications).

A single-node, binary linear classi�er, the perceptron, was one of the �rst successes in

the �eld of arti�cial neural networks ([23]). �rough adjustments of connection weights,

the perceptron could �nd a linear classi�cation boundary that separated di�erent input-

output relationships. For example, the perceptron could solve the AND problem by

drawing a linear boundary that separates a output of “1” (produced by inputs (1,1)) from

an output of “0” (produced by inputs (0,0), (1,0), and (0,1)). �is linear classi�cation,

however, is of limited utility, and the failure of the perceptron to solve the XOR prob-

lem motivated the construction of multiple perceptron network models that could �nd

nonlinear classi�cation boundaries.

In the common construction of a multiple perceptron network, a single input layer

fans out into one “hidden layer” and recombines into a single output layer. With minimal

increase in structure compared to the single perceptron, the use of multiple perceptrons

signi�cantly increases the representational power of the network and enables the �nding
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Figure 2.5: Types of Training Functions. �e number of nodes in the input and output layers
of neural networks correspond to the dimensionality of the input and output space of the training
function. (a) A network with a single input and single output node can represent a set of (x, y)
points by �nding a functional approximation f(x) of the 1D input space x. �e input node
accepts a value x (horizontal displacement), and the output node produces a value f(x) that
approximates the desired output y (vertical displacement). (b) In comparison, a network with
two input nodes and one output node can represent a greyscale image by �nding a functional
approximation f(x1, x2) of a 2D input space (x1, x2). In this case, the network accepts two
inputs, x1 and x2 (pixel coordinates), and produces a single output f(x1, x2) that approximates
the desired output z (pixel intensity).

of nonlinear classi�cation boundaries. Furthermore, the parallel one-layer construction

of this fan architecture is very e�cient.

�e number of nodes in the input and output layers of multiple perceptron networks

corresponds to the dimensionality of the problem at hand. For the XOR problem, the

binary classi�cation of (x,y) inputs is mapped onto a network with two input nodes (one

each for the x and y values) and one output node (whose binary response assigns the
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input values to one of two possible groupings). However, arti�cial neural networks are

by no means limited to small input/output spaces, binary responses, or classi�cation

problems. Higher-dimensional problems, such as image processing, can be addressed

by constructing networks whose input/output space matches the dimensionality of the

image. For example, a network with two input nodes (one each for (x,y) coordinates

of image pixels) and one output node (for the pixel intensity) could be designed to

reproduce the image, where the output could be binary or continuous depending on

whether the network was reproducing a binary or greyscale image. Alternatively, for an

image classi�cation problem (as is used for handwriting analysis), a network could be

designed with a set of input nodes totaling the number of pixels in the image and with a

set of binary output nodes totaling the number of classi�cation groups (e.g. 26, one for

each letter, in handwriting analysis).

With the proper considerations, neural networks can be tailored to �t the goals and

constraints of a wide range of problems (e.g. Figure 2.6). Because of this, many years of

research have been dedicated to the optimal design of neural networks for the accurate

performance of very speci�c computational problems. In particular, given su�cient

numbers of nodes, neural networks can approximate any function within a prescribed

error tolerance ([24, 25]). However, given a �xed number of nodes and connections (or

analogously neurons and synapses), the degree to which di�erent network constructions

vary in their performance of competitive functions is not understood. We therefore take

a very di�erent approach to the study of neural networks than is traditionally considered,
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Figure 2.6: Types of Studies for Which Neural Networks are Commonly Used. Neural net-
works are commonly used for a variety of highly nonlinear problems, such as (a) character
recognition, e.g. used by the Post O�ce for the automated recognition of handwriting, (b) image
reconstruction, e.g. used in image processing to infer obstructed objects, (c) clustering, e.g. used
to predict the buying preferences of a demographic from information such as age, gender, ethnic-
ity, and income, and (d) forecasting, e.g. used to predict stock market trends from past history.
Neural networks are advantageous for these studies because they can be designed to collect a wide
range of di�erent input features. �e transfer functions of individual nodes and the connectivity
between nodes can be optimized to robustly perform very speci�c functions.
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whereby we investigate the extent to which variations in network properties impact the

ability of the network to balance several di�erent functions. We use a common and

well-studied arti�cial neural network model, the feedforward backpropagation network

trained via conjugate gradient descent, for the biologically-motivated study of sequential

learning and memory processes. By varying the network topology, the information

presented the network, and the training time allowed to process this information, we

identify speci�c network properties that support and constrain a balance between the

acquisition versus retention of information. �is approach is crucial for isolating the

e�ects of biological constraints, such as layered topologies, noisy environments, and

limited processing time, that are not commonly addressed in traditional arti�cial neural

network studies.

2.4 Feedforward Neural Network Model

Feedforward networks are constructed in layers of nodes, and nodes in adjacent layers

are connected via variable, unidirectional weights. It is customary to refer to the �rst and

last layers as the “input” and “output” layers, and all remaining intermediate layers as

“hidden” layers. �e number of nodes in each layer need not be the same across layers, nor

do the patterns of connections linking nodes in adjacent layers. As discussed previously,

however, the number of nodes in the input and output layers correspond respectively to

the dimensionality of the input and output spaces.

We will focus our discussion on networks with a single input and single output node,
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for which the network generates a one-dimensional output space as a function of the

one-dimensional input. We will discuss extensions to higher dimensional problems in

Chapter 3.3

Each node is described a transfer function gn(x) that maps its collected input onto a

single output. Biological transfer functions can vary from cell to cell, many of which are

nonlinear and saturate at very high or very low input values. In the analysis presented

here, we choose the sigmoidal transfer function:

gn(x) = s(x) =
1

(1 + e(−x))
, (2.1)

a function that is known to describe, for example, the change in �eld potential pro-

duced by neurons in the visual cortex [26].

�e output y of a given node is a function of the weighted sum of its inputs xp, given by

y = s(
∑

p=1 ωpxp−θ). �e weight ωp of the pth input connection represents the strength

of the synapse from node p onto the given node. �e variable threshold θ is treated as an

additional weight connected to a constant input (θ = ω0x0) and represents the activity-

dependent �ring threshold of a neuron. Representing the threshold as θ = ω0x0, where

x0 = 1 for all nodes, allows us to organize all adjustable parameters into a single, Np-

dimensional weight vector ω. Together, these weights contain all information about the

network representation of a given input.

�e signalsx and y passed between nodes represent steady-state �ring rates of neurons,
3For a detailed description of FFBP neural network models, see Rojas’ book “Neural Networks - A

Systematic Introduction” [27]
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Figure 2.7: Schematic of a Feedforward Neural Network. Feedforward neural networks are
designed such that signals are transmitted in one direction (by de�nition, the ‘forward’ direction)
through the network, from nodes in layer ` to nodes in layer `+ 1, with no recurrent connections
between nodes in a given layer. �e �rst layer is de�ned to be the ‘input layer’. Connections feeding
into the input layer are typically unweighted and transmit raw input values into the network.
�e last layer is de�ned to be the ‘output layer’. �e signal transmitted at the output layer can
be compared to the desired output, and an error can be assigned to the di�erence between the
network and desired outputs. All intermediate layers are termed ‘hidden layers’ because they
do not have direct access to the input or output information. Hidden layer connectivity is o�en
chosen such that all nodes in layer ` are connected to all nodes in layer `+ 1, for which the two
layers are said to be ‘fully-connected’. Connections between nodes can be weighted by continuous
or binary weights. Typically, hidden and output nodes (but not input nodes) receive an additional
‘bias input’ of value 1 connected by a variable ‘bias weight’, which provides a variable linear bias to
the input of the given node. �e transfer function of each node can be chosen to �t the speci�c
problem at hand. Typical transfer functions include the sigmoidal transfer function used here,
which performs a nonlinear ‘squashing’ of the input that saturates at 0 and 1 for very low and
very high input values. Sigmoidal responses have been observed in certain types of neurons. �e
values of the input weights then serve to vary the sensitivity of the node (or neuron) by altering the
nonlinearity of the sigmoid. �e bias weight shi�s the sigmoid to the right or le� and is analogous
to an activity-dependent �ring threshold in a neuron.
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which change iteratively during training. �ere is then no notion of time other than

the iteration index, which represents computational rather than dynamic time. �e use

of temporally-varying signals is not standard for feedforward networks and introduces

signi�cant complexity into the model. We therefore focus on the analysis of steady-state

networks. In the subsequent sections, we discuss applications of feedforward networks

to sequential learning, for which time is represented in the sequence of training sessions.

2.4.1 Training Methods

Supervised training of a network is accomplished via learning rules that dictate

how local or global variables, such as the connection weight ω, are adjusted in order to

produce a desired input-output relationship. For the task of one-dimensional function

approximation, the network is presented with a training pattern of Nd pairs of input xd

and target yd values, denoted (x,y). We restrict the input x space to the range (0, 1),

and the sigmoid transfer function restricts the output y space to the range (0, 1). �e

set of variable weights ω is iteratively updated in order to minimize the output error

E(ω). We use o�ine training for which E(ω) is the sum of squared errors between the

network output y(ω) and target output y calculated a�er all Nd points are presented to

the network:

E(ω) =
1

2

Nd∑
d=1

(yd(ω)− yd)2 . (2.2)

�is error gives us a direct measure of the success of the network in approximating
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Figure 2.8: Illustration of the Feedforward Backpropagation Algorithm. Consider a single
layer network training on a set of (x, y) training points (black circles). In the feedforward sweep
(le� column), the x values of these points are fed via the input node into the single hidden layer of
the network. �e output On of nodes n in the hidden layer is computed as a function of weighted
inputs ωmnxm. �e valuesOn are then collected at the output node, which returns a valueOp as a
function of summed inputs

∑
ωnpOn. �is output, when computed across the full range of input

values, yields a functional representation of the training points (solid blue line). �e error E is
computed as the least squares deviation of the network output from the desired output (training
points). In the backpropagation sweep (right column), the error is fed backwards through the
network to compute the gradients δE/δωnp and δE/δωmn, which are then used to update the
weights ωnp and ωmn. �e process of updating the network weights results in a more accurate
functional representation (dotted blue line) with a correspondingly lower error. �is process,
one feedforward and one backpropagation sweep, is then repeated iteratively until the error falls
below a given threshold value.
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the input and thereby allows us to “supervise” the network during training.

As E(ω) is an Np-dimensional function of the connections weights ω, the process of

updating ω to minimize error can be understood as searching an Np-dimensional error

landscape for a global error minimum (see [28]). Standard gradient descent algorithms

search this landscape by updating in the negative gradient direction−g = −∂E(ω)/∂ω,

and such methods are extremely useful for navigating symmetric basins. We use a varia-

tion of this, the conjugate gradient descent method, that is more e�cient for searching

asymmetric basins [29] (see Figure 2.9). By this method, the weights ωk at iteration k

are updated according to the rule:

ωk+1 = ωk + λk+1uk+1, (2.3)

where λk+1 is an adaptive step size. �e conjugate gradient direction uk+1 combines

information from the gradient direction−gk and the step directionuk from the previous

iteration:

uk+1 = −gk + βk+1,kuk, (2.4)

where u0 = −g0. We choose the Polak-Ribiere update βk+1,k, given by:

βk+1 =
gTk+1 · (gTk+1 − gk+1)

gTk · gk
. (2.5)

�e steps of the feedforward backpropagation algorithm are illustrated schematically

in Figure 2.8. Additional details regarding the conjugate gradient method and the Polak-
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Standard Gradient Descent Conjugate Gradient Descent

Figure 2.9: Advantage of Conjugate versus Direct Gradient Descent Approaches. In stan-
dard gradient descent methods (le�), the navigation of long, narrow minima can require many
successive steps. In comparison, the conjugate gradient method more e�ciently enables networks
to �nd minima through fewer numbers of larger steps.

Ribiere update can be found in references [29], [30], and [31]. �e update process

repeats for a �nite number of iterations or until the error plateaus or falls below a desired

threshold, thereby marking the end of a training session.

2.4.2 Catastrophic Forgetting and the Role of Rehearsal

Standard neural network studies optimize training on a single dataset. However, to

study the integration of new and old information, as is needed to study the interaction

between learning and memory processing, information must be presented to the network

sequentially. �is is o�en accomplished by coupling several training sessions, in which

the network fully trains on a single pattern before being presented with a new pattern.

�e set of weights produced during the �rst training session forms the starting point for

the second training session and retains the memory of the original pattern.
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Figure 2.10: Illustration of the Pseudorehearsal Method. We compare sequential training of
networks using standard rehearsal (le� column) and pseudorehearsal (right column). During the
�rst training session, the network learns a representation of a set of original points (black �lled
circles). To retain this representation during subsequent training sessions, standard rehearsal
requires that the network retrain with both the original and the new points (red �lled circles).
However, as the number of training session increases, this method requires that the network retain
all previous training points (grey �lled circles), which is both biologically unrealistic (as it requires
the network to retain a exact history of the information that it has seen) and computationally
expensive (as the number of previous point grows with the number of sequential training sessions).
�e biologically-motivated pseudorehearsal method addresses both of these problems. With this
method, the network preserves information from prior training sessions by retraining with a
set of points sampled from its own internal representation (black open circles). �is method
relies solely on the network representation of all previous training points, rather than the points
themselves, and therefore the computational expense does not grow with the number of training
sessions.
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Sequential training in this manner, however, leads to the problem of “catastrophic

forgetting,” in which a network learns new information at the cost of forgetting old in-

formation. �is is a longstanding problem in the sequential training of neural networks

and has been addressed with several types of rehearsal methods [32, 33, 34]. Standard

rehearsal involves training the network with both the original and new information

during sequential training sessions. However, this requires that the network have access

to all previous training patterns, a requirement that is both computationally expensive

and biologically unrealistic. We use a more biologically motivated approach, the pseu-

dorehearsal method [35], in which the network trains with a representation of the original

information. Pseudorehearsal has been shown to prevent catastrophic forgetting in both

feedforward and recurrent networks and does not require extensive storage of examples

[35, 36] (see Figure 2.10 for a comparison of standard versus pseudo rehearsal methods).

Consider two coupled training sessions, denoted 1 and 2, in which the network is

presented with two di�erent sets of points, (x1, y1) and (x2, y2). Prior to the �rst training

sessions, network weights are randomly chosen. Following the �rst training session,

the set of weights ω1 generated by the network forms a functional representation of the

original points (x1, y1). To integrate information about the second set of points, (x2, y2),

the network must retrain on this set of points. Rather than randomizing the network

weights, however, the network begins in the con�guration speci�ed by ω1. Retraining

on (x2, y2) alone leads to catastrophic forgetting. Retraining on the full set of points

{(x1, y1), (x2, y2)}, a standard rehearsal method, alleviates this problem but requires
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that the network have access to both (x1, y1) and (x2, y2). In the case of two coupled

training sessions, this may not be problematic, but as the number of sessions increases,

the feasibility of storing all previously encountered patterns becomes increasingly prob-

lematic. Assume, instead, that the network samples its own representation by selecting a

set of (xb, yb) pairs that are produced by ω1. �ese points are distinct from the training

points (x1, y1), but they contain information about the network approximation of (x1, y1).

Retraining with the set of points {(xb, yb), (x2, y2)} similarly alleviates catastrophic for-

getting, but it does not rely on the original pattern (x1, y1). Rather, it relies only upon

the representation stored in the current state of the network (in this case, ω1). As the

number of training sessions increases, the size of (xb, yb) remains constant, while the size

of (x1, y1) grows linearly with the number of sessions.

2.4.3 Task Implementation

To consider variations in network performance across a range of network structures,

we consider the �ve distinct architectures shown in Figure 2.11. Each network is com-

posed of Nn hidden nodes arranged into h layers of ` nodes per layer. �e parallel “fan”

and layered “stacked” networks are both fully connected and have the same total number

of connections. �e connectivities of the “intermediate” networks, which have slightly

greater numbers of connections than the fan and stacked networks, were chosen in order

to roughly maintain the same total number of adjustable parameters per network, Np,

noted in Figure 2.11.
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Figure 2.11: Network Architectures Considered in this Study. We consider �ve network ar-
chitectures that vary in the ratio of their height h to their width `, which correspond respectively
to the number of hidden layers per network and the number of nodes per hidden layer. Indicated
below each network is the number Np of parameters (given by the total number of connection
and bias weights) and the name by which we refer to the network. �e parallel “fan” and layers
“stacked” networks are fully connected. �e connectivity of the intermediate networks, which
are not full connected, is chosen to roughly maintain a �xed total number of parameters across
networks.

We train each network over two sequential sessions, using identical training methods

across all networks. �e steps of the sequential training process are shown schematically

in Figure 2.12 and are described below, where U(a, b) denotes a continuous uniform

probability distribution over the interval (a, b):

First Training Session

Step 1.1 - Initialize: Network weights are randomly chosen from U(−5, 5). We refer

to this state of the network as the “randomly initialized state”.

Step 1.2 - Train: �e network trains on six “original” points (x(o),y(o)) whose values

remain �xed for all simulations. �e original points are chosen to be evenly spaced in

x (x(o) = (.1, .26, .42, .58, .74, .9)) and random in y (y(o) = (.55, .92, .53, .78, .33, .49)).

Similar behavior is observed for di�erent choices, including permutations, of the speci�c
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Figure 2.12: Sequential Learning and Memory Task. Illustration of the sequential learning
task described in the text applied to the fan network. Network weight are randomly initialized
prior to the �rst training session. During the �rst training session, the network is given an
extended training session of 105 iterations to generate a representation fo(x) of six randomly
chosen (x(o), y(o)) points. Prior to the second training session, the network randomly samples
six bu�er points (x(b), y(b)) from fo. During the second training session, the network is given a
short training session of 500 iterations to produce a representation fn(x) of both new (x(n), y(n))
and bu�er points. �e second session is repeated 1000 times to generate a statistical distribution
of network representations.
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values used here (see Chapter 3). �e original points represent the information we wish

the network to remember during subsequent training. �e network is given 105 iterations

to generate a functional representation fo of (x(o),y(o)) (see upper right panel in Figure

2.12), and training ceases if the error plateaus (∆E < 10−5 for 1000 iterations). We refer

to this situation as allowing “unlimited” training time because in practice, the network

�nds a solution before reaching the maximum number of iterations.

Second Training Session

Step 2.1 - Sample: �e set of weights that produce fo forms the starting point for

the second training session. We refer to this state of the network as the “sampled state”

in order to distinguish it from the randomly initialized state chosen prior to the �rst

training session. In this state, the network randomly samples a pool of 1000 bu�er

points (x(b), y(b)) from fo (see lower le� panel in Figure 2.12.) �is is accomplished by (i)

randomly choosing input x(b) values from U(0, 1) and (ii) computing the corresponding

output yb = fo(x
(b)) values using the set of network weights that produce fo. Subsets of

bu�er points, which lie along the functional representation fo of the original points, are

used in the following step to simulate memory rehearsal.

Step 2.2 - Re-train: �e network re-trains on six new points (x(n),y(n)) and six

bu�er points (x(b),y(b)) (see fourth panel of Figure 2.11(b)). New points are chosen by

randomly selecting six independent x(n) and y(n) values from U(0, 1). Bu�er points are

chosen by randomly selecting, with uniform probability, six (x(b), y(b)) pairs from the

pool of the bu�er points generated in Step 2.1. Training on the same number of new
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and bu�er points places equal emphasis on learning and memory rehearsal. Because the

new points are randomly chosen and poorly constrained, we repeat the second training

session 1000 times to generate a distribution of solutions {fn} (see lower right panel of

Figure 2.12). Both the new and bu�er points vary from session to session, but the bu�er

points are always sampled from the same original function fo. We restrict the training

time of each session to 500 iterations, thereby giving the network “limited” time to learn.

Notation: We use the super and subscripts “o” and “n” to refer respectively to the

“original” and “new” points, (x(o),y(o)) and (x(n),y(n)), and functional approximations,

fo and fn. Each function fo produces a single error value E(o)
o measured with respect

to (x(o),y(o)). Each set of functions {fn} produces two sets of error values, {E(o)
n } and

{E(n)
n }, measured with respect to (x(o),y(o)) and (x(n),y(n)), respectively.

2.5 Tradeo�s in Learning and Memory Tasks

We train the �ve networks shown in Figure 2.11(a), �rst considering the di�erences

between the boundary fan (parallel) and stacked (layered) networks. Given the large

number of adjustable parameters Np relative to the small number of training points Nd,

we expect all �ve networks to �t the points with high accuracy. Instead, the networks

show signi�cant di�erences in performance both within individual training sessions and

measured statistically over many sessions. �ese results, discussed below, show the same

qualitative features for larger networks and for permuted training points (see Chapter 3).
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Figure 2.13: Solutions Produced by Fan and Stacked Networks. Panels (a) and (b) show solu-
tions produced respectively by the fan and stacked networks, indicating for each network the
approximation fo (solid curve) of the original points (point markers) and a subset of approxima-
tions {fn} (dashed curves) of the new and bu�er points. In this realization, the fan network �ts
the original points with a high order polynomial, while the stacked network produces a largely
linear �t. Subsequent approximations {fn} retain these features of fo.

2.5.1 Fan and Stacked Architectures

Examples of the solutions fo and {fn} produced by the fan and stacked networks

are shown in Figures 2.13. Each set {fn} is characterized by errors {E(o)
n } and {E(n)

n },

which measure the ability of the network to retain and learn information, respectively.

�e complementary cumulative distribution functions (cCDFs) of these errors are shown

in Figures 2.14(a) and 2.14(b), where the cCDF(E) gives the probability that the network

produces an error value greater than E for every value of E.

�e fan and stacked networks produce qualitatively di�erent types of solutions fo

and {fn}. While the speci�c functional form of fo depends on the randomly initialized

network state (see the following section), the fo solutions shown here have errors that are

representative of the average network performance over a range of randomly initialized
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states. �e stacked solution fo averages over the variation in the original points (Figure

2.13(b)). In contrast, the fan solution fo accurately �ts all six original points with a high

order polynomial (Figure 2.13(a)). In both networks, subsequent solutions {fn} retain

the features of fo. Because the sigmoid transfer function (see Models) is identical for all

nodes, the di�erences between the fan and stacked solutions arise solely from variations

in network architecture. As the sigmoid function maps an in�nite input space to a �nite

output space bounded between 0 and 1, successive applications of sigmoids produced by

serial (stacked) computations tend to result in linear outputs, while a sum of sigmoids

produced by parallel (fan) computations tends to result in highly variable outputs.

�e interference between the two training sessions results in the deviation of {fn}

from fo, which tends to increase {E(o)
n } relative to E(o)

o . We �nd that in its best case, the

stacked network shows no deviation in {E(o)
n } from E

(o)
o . In contrast, the fan network

shows a minimum deviation of 130% and a higher deviation on average compared to the

stacked network. �is deviation measures the ability of the network to retain the original

representation fo, regardless of how erroneous that representation may be. Although the

stacked network generates a higher error representation of the original points during the

�rst training session, it can more accurately retain this representation when presented

with new points.

�e minimum and maximum values of {E(o)
n }measure the best success and worst

failure of the network in retaining old information while avoiding interference from

new information. While the bounded output space limits the maximum error, linear
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Figure 2.14: Error Distributions Produced by Fan and Stacked Networks. Panels (a) and (b)
respectively show the cCDFs of {E(o)

n } and {E(n)
n }, with the average value of each distribution

marked by a �lled circle and with the network responsible for producing the distribution indicated
beneath the distribution average. Panels (c) and (d) illustrate the calculation of error values E(o)

n

and E(n)
n from a representation fn, where error is measured with respect to (c) original versus

(d) new points. (a) �e fan network achieves a lower minimum but higher maximum error on
the original points than does the stacked network, resulting in a wider distribution with a higher
average error. (b) Both networks produce low minimum errors on the new points, but the fan
network again produces higher average and maximum errors than does the stacked network.
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solutions tend to further restrict these bounds. As a result, the stacked network has a

lower maximum error at the cost of having a higher minimum error, as shown in Figure

2.14a. In contrast, the fan network can retain the original information more accurately

by achieving a lower minimum error, but it can also fail more catastrophically with a

higher maximum error.

Similar features are observed in the distributions of {E(n)
n } shown in Figure 2.14b.

�e minimum and maximum values of {E(n)
n }measure the best success and worst failure

of the network in learning new information while attempting to retain old information.

While both networks achieve low minimum error at their best, the fan network produces

a much larger maximum error than does the stacked network. In addition to achieving

more extreme best and worst cases, the fan network also has higher average error values

〈{E(o)
n }〉 and 〈{E(n)

n }〉.

2.5.2 Intermediate Architectures: Tradeo�s in Performance

We extend our analysis to the intermediate architectures shown in Figure 2.11, orga-

nizing results based on the degree of serialization h/` (a purely geometrical factor).

Tradeo�s in performance are observed across the range of architectures. For example,

in Figure 2.15(a), we see a tradeo� between the minimum and maximum values of

{E(o)
n }. As h/` increases, the network does not fail as badly in its worst case but also

does not succeed as well in its best case. Furthermore, we �nd a tradeo� in performance

between the �rst and second sessions, shown in Figure 2.15(b). Increasing h/` worsens
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Figure 2.15: Tradeo�s in Performance Exhibited Across Network Architectures. Tradeo�s
in network performance are measured with respect to solutions fo and {fn} produced by the
�ve networks shown in Figure 2.11(a). With respect to solutions {fn} produced during the
second training session, increasing h/` (a) decreases the maximum value of {E(o)

n } at the cost of
increasing its minimum value. (d) Furthermore, increasing h/` increases E(o)

o achieved during
the �rst session at the cost of decreasing 〈{E(n)

n }〉 and 〈{E(o)
n }〉 achieved during the second

session.

performance during the �rst session by increasingE(o)
o but improves average performance

during the second session by decreasing both 〈{E(n)
n }〉 and 〈{E(o)

n }〉, suggesting a tradeo�

between the accuracy and generalizability of network solutions. �e fan network, which

produces a very accurate, speci�c representation of the original points, shows a much

higher average error when it tries to generalize this representation. In contrast, the

coarser representation produced by the stacked network is better able to incorporate new

information.

We further �nd that layering improves several aspects of performance. Figure 2.16(a)

shows that increasing h/` decreases the maximum error in both {E(o)
n } and {E(n)

n },

indicating that the stacked architecture is best suited for minimizing failure in both
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Figure 2.16: Impact of Layering on Improved Performance. Variations in network perfor-
mance are measured with respect to solutions fo and {fn} produced by the �ve networks shown
in Figure 2.11(a). With respect to solutions {fn} produced during the second training session,
increasing h/` (a) decreases the maximum error in both {E(n)

n } and {E(o)
n }, and (b) decreases

the average solution variance 〈{(∆fn)2}〉 and the average errors 〈{E(n)
n }〉 and 〈{E(o)

n }〉. �is
shows that layering improves performance by decreasing the average and maximum network
error, which corresponds to a decrease in average solution variance.

learning and memory. Figure 2.16(b) shows that increasing h/` decreases both the

average solution variance 〈{(∆fn)2}〉 and the average errors 〈{E(n)
n }〉 and 〈{E(o)

n }〉.

While we might naively expect that high solution variance (fan) would indicate a �exible

network able to accurately �t nonlinear data, we instead �nd that high variance leads to

high average error. In contrast, low variance, linear solutions (stacked) tend to minimize

average error.

2.6 Adaptation to Variable Learning Conditions

Both natural and arti�cial systems can be found in a variety of states when presented

with new information. �e success in learning this information may depend both on
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the initial state of the system and on the learning conditions. We explore these possible

dependencies by varying both the randomly initialized network state and the training

conditions.

2.6.1 Variable Initialized States

Because the conjugate gradient descent algorithm is deterministic, the randomly

initialized state determines fo, which then in�uences subsequent solutions {fn}.

To study the in�uence of random initialization on fo, we train all �ve networks on

the original points with 500 sets of randomly chosen weights, each of which correspond

to a speci�c starting location within the error landscape. By allowing “unlimited” train-

ing time, each network deterministically locates error minima with errors {E(o)
o } and

corresponding solutions {fo}. In this manner, we systematically probe the features of the

underlying error landscape.

�e cCDF of {E(o)
o }, shown in Figure 2.17(a), reveals that the fan network consistently

�nds zero error solutions, while all other networks �nd solutions with a wide range of

error values. �e networks can collectively produce both zero error and high error

solutions and do so with probabilities that respectively decrease and increase as h/`

increases. �e discontinuities in the stacked error distribution may indicate that the error

landscape is composed of localized sets of minima with distinct depths. In comparison,

the intermediate distributions show greater continuity in error, suggesting the presence

of a larger number of connected minima with variable depths.
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networks (upper inset). Increasing h/` signi�cantly decreases the both the maximum error and
the frequency of high error solutions (lower inset). In both (a) and (b), increasing h/` increases
〈{E(o)

o }〉 (�lled circles).
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�e distributions are more heavily weighted toward high error as h/` increases,

thereby increasing the average error 〈{E(o)
o }〉. For a given architecture, the average

number of training iterations decreases with increasing solution error, indicating an

inherent tradeo� between speed and accuracy. While able to produce solutions with the

same degree of accuracy as the fan network, the intermediate and stacked networks can

also quickly produce coarse solutions. However, the intermediate networks require fewer

iterations than the stacked network to reach solutions of similar error, suggesting that

the presence of additional connections may facilitate faster performance.

If we inspect the solutions produced by each network, we �nd that low, medium, and

high error solutions correspond respectively to �tting all, some, or none of the points

with a high order polynomial and �tting the remaining points with a horizontal line. To

emphasize di�erences in network performance, the solutions fo used to generate the

results shown in Figures 2.13 and 2.15 were chosen because their error was representative

of the distribution averages shown in Figure 2.17(a).

2.6.2 Temporal Constraints

In natural systems, the time allowed to gather information from the environment is

o�en limited, and a highly speci�c representation of information may not be desirable or

even attainable. To investigate the e�ect of temporal constraints, we train the �ve networks

on the original points with 5000 sets of randomly chosen weights, now terminating

training a�er 100 iterations. While the case of unlimited training time considered in
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the previous subsection enables us to identify the distribution of minima within each

network error landscape, limiting training time highlights the ability of each network

to e�ciently locate these minima. �e increased number of randomly initialized states

allows us to better resolve the edges of the error distributions shown in Figure 2.17(b).

Once training time is limited, all distributions shi� toward higher error values, again

revealing a tradeo� between speed and accuracy. As before, 〈{E(o)
o }〉 increases as h/`

increases. Discontinuities in the distributions are also removed, indicating that the

networks do not have su�cient time to consistently �nd distinct sets of minima.

�e dynamic range of performance decreases as h/` increases, resulting in signi�cant

di�erences between the edges of each distribution. At the rightmost edge, both the

frequency of high error solutions and the maximum error value increase as h/` increases.

�e stacked network shows an abrupt cuto� near the minimum error achieved by �tting

the original points with a horizontal line. All other distributions extend beyond this

value. In contrast to the case of unlimited training time, the fan network shows the least

consistency in performance and produces several catastrophic errors, thereby revealing

the greatest sensitivity to changes in training time. At the le�most edge of the distributions,

the intermediate networks �nd lower minimum error values than do the fan and stacked

networks. �is is similar to the behavior observed with unlimited training time, where

the intermediate networks found comparable solutions to the fan and stacked extremes

in fewer iterations. It may therefore be interesting in the future to verify the dependence

of performance on the number of network connections.

58



−10 0 10
−10

0

10

 Eo 

 0

.4

.8

1.2

(a) (b)

al
on

g 
 ξ(1

)
∆
ω

(1
)

(o)

Cross Section of Error Landscapes 

−10 0 10

along  ξ(2)∆ ω(2)along  ξ(2)∆ ω(2)

Figure 2.18: Cross Section of Network Error Landscapes. ErrorE(o)
o is projected onto the two

sti�est eigenvector directions ξ(1) and ξ(2) about minima produced by the (a) fan and (b) stacked
network given unlimited training time. �e two minima were chosen for comparison because they
have the same number and similar magnitude of nonzero eigenvalues, although similar behavior
was observed for alternative minima. �e insets show zoomed in views of the contour plots about
their central minima. (a) �e projection of the fan landscape shows a single deep minimum
surrounded by smooth peaks. (b) In contrast, the projection of the stacked landscape shows a
long, deep valley of several local putative minima separated by low barriers. �e surrounding
landscape is much bumpier than that of the fan network.

2.7 Dependence on Error Landscape Structure

To better understand how the underlying error landscape constrains network perfor-

mance, we assess the local properties of error landscape minima. As both the network

structure and the external training information dictate error landscape features, this char-

acterization provides a direct link between the structural variations in network topology

(Figure 2.11) and the observed di�erences in network performance (Figures 2.14, 2.15,

and 2.16).
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2.7.1 Characterizing Landscape Minima

Given unlimited training time, the distributions in Figure 2.17(a) mark the error of

local minima found within the error landscape of each network. Each minimum can

be characterized by the degree of local landscape curvature, where directions of high

curvature specify combinations of weight adjustments that produce large changes in error.

We adopt the terminology used in previous studies and refer to directions with high and

low curvature as sti� and sloppy, respectively [37, 38]. Sti� and sloppy directions are

found by diagonalizing the error Hessian Hpq = ∂2E/∂ωp∂ωq evaluated at the set of

weights that produces the local error minimum. For computational e�ciency, we use the

approximate Levenberg-Marquardt (LM) Hessian [39], de�ned as:

∂2E

∂ωp∂ωq
≈

ND∑
d=1

∂r
(o)
d

∂ωp

∂r
(o)
d

∂ωq
, (2.6)

where r(o)d = (yd(ω)− y(o)d ) is the residual of the dth original point.

�e LM Hessian is a good approximation to H when the error of local minima, and

thus the residual r(o)d , is small and the additional Hessian term r
(o)
d ∂2r

(o)
d /∂ωp∂ωq can be

neglected. For a given model and data set, the LM Hessian agrees well with the sti�est

eigenvectors of H and is equivalent to H when the model perfectly �ts the data. In

addition, it has a known number of exactly zero eigenvalues equal to the di�erence in the

number of model parameters Np and the number of data points Nd [37, 38].

We diagonalize the LM Hessian about each of the 500 minima with the error values

{E(o)
o } shown in Figure 2.17(a). Each error minimum produces a set of Np eigenvalues
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λ and normalized eigenvectors ξ , which give the degrees and directions of sti�ness in

weight space.

As an illustrative example of landscape features observed along these relevant direc-

tions, Figure 2.18(a-b) shows the projection of the error landscape onto the two sti�est

eigenvector directions ξ(1) and ξ(2) centered on zero error minima produced by the fan

and stacked networks, respectively.

�e fan landscape shows a single deep basin surrounded by smoothly varying peaks.

In contrast, the stacked landscape is rugged, showing a deep valley with several minima

separated by small barriers. While these minima appear to be distinct, they may be

connected by higher dimensional pathways that cannot be seen in this reduced space.

2.7.2 Participation of Network Connections

�e ability of a network to move along relevant eigenvector directions may depend on

the number of weights that must be signi�cantly adjusted, or equivalently the localization

of eigenvector components. To quantify the degree of localization of the pth eigenvector

ξ(p), we calculate its participation ratio [40]:

ρ(p) =
∑
q

(ξ(p)q )4 (2.7)

where individual eigenvector components ξ(p)q correspond to speci�c weights ωq in

the network. ρ(p) is a dimensionless quantity that ranges between a completely delocalized

minimum of 1/NP , for which all components have equal weight 1/
√
NP , and a completely
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localized maximum of 1, for which a single component carries unit weight.

For the set of minima with error values {E(o)
o }, we quantify {ρ(1)} and {λ(1)} of

the sti�est eigenvectors {ξ(1)}, as combinations of weight changes speci�ed by these

eigenvector directions produce the largest changes in error. �e covariances CE,ρ =

Cov(E(o)
o , ρ(1)) and CE,λ = Cov(E(o)

o , λ(1)) in these quantities are shown by the ellipses

centered about their average values in Figures 2.20(a) and 2.20(b), respectively.

Figure 2.20 highlights the variability in basin structure within and between the net-

works. As h/` increases, both the average and variance in {E(o)
o }, {ρ(1)}, and {λ(1)}

increase. Higher variance leads to lower con�dence in predicting the success of the

network, but it also suggests that the network has more options when exploring its error

landscape.

�e orientations of the covariance ellipses in Figures 2.20(a) and 2.20(b) provide

information regarding the relationships betweenE(o)
o , ρ(1), and λ(1). �e semi-major axis

of each CE,ρ ellipse in Figure 2.20(a) lies along the trend swept out by the average values

of {E(o)
o } and {ρ(1)}, suggesting a general, positive correlation between E(o)

o and ρ(1).

While the average values of {E(o)
o } and {λ(1)} would suggest that these quantities are

also positively correlated, Figure 2.20(b) shows that for a given value of h/`, larger values

of E(o)
o correspond to smaller values of λ(1). �ese results reveal general characteristics

of error landscape structure; higher error minima (larger E
(o)
o ) tend to be shallower

(smaller λ(1)) and require the adjustment of fewer weights (larger ρ(1)).

62



(o)Eo    

ρ(1)

λ(1)

Summary of Basin Properties

ξ

E    

basin error Eo

basin curvature       
(largest eigenvalue of Hessian)

localization      of network weights       
(participation ratio of       )

Basin properties along 
stiffest eigenvector      ω1

ρ(1)

λ(1)

(o)

“stiff”
direction

“sloppy”
direction

ξ

ξ

ξ
(1)

(2)

(1)

(1)

Figure 2.19: Basin Properties of Interest. Sti� and sloppy landscape directions. which corre-
spond respectively to directions of high and low curvature about local landscape minima, are
computed as the eigenvectors ξ of the LM Hessian. For each of 500 minima within network error
landscapes, we assess landscape properties along the sti�est direction ξ(1). We compare the error
E

(o)
o of each minimum, which is independent of the landscape direction in consideration, with

two direction-speci�c properties: the curvature λ(1) (sti�est eigenvalue) and the localization ρ(1)
of weights (participation ratio of eigenvector components) along the sti�est landscape direction.

2.7.3 Landscape Characteristics and Successful Learning

Variations in landscape structure provide insight into the way in which each network

searches for solutions. In particular, fan solutions are characterized by low error and

participation ratio, indicating that the fan network must adjust nearly all of its weights

in order to navigate zero error basins. In contrast, stacked solutions span a range of

error values. �e corresponding basins are characterized by a variety of eigenvalues and

participation ratios, indicating that the stacked network can navigate many types of basins

by adjusting variable numbers of weights. Larger participation ratios correspond to higher

errors and lower eigenvalues, suggesting that the stacked network can navigate shallow,

high error basins by adjusting few connections. Narrow, low error basins, found by both

the fan and stacked networks, require �ne tuning of a large number of connections.
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Figure 2.20: Covariance in Basin Properties. Covariances between (a) {ρ(1)} and {E(o)
o } and

between (b) {λ(1)} and {E(o)
o } are shown for error landscape minima produced by the �ve

networks shown in Figure 2.11. For each network, the values of {E(o)
o } are taken from the

distributions shown in Figure 2.17(a). Covariances, indicated by ellipses, are centered about their
average values, indicated by markers. �e semimajor axis of each ellipse marks the direction
of maximum covariance. Increasing h/` increases both the average and variance in all three
quantities. For a given network, larger values of E(o)

o generally correspond to smaller values of
λ(1) and larger values of ρ(1).
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In combination, landscape characteristics help explain the results shown in Figures

2.15 and 2.17. Given unlimited training time, landscape variability is disadvantageous

and can prevent a network from �nding a low error minimum. Once time is limited,

landscape variability can be advantageous in preventing failure by providing the network

with high error, shallow basins that can be navigated with the adjustment of relatively

few connections. If limited training time is coupled with extremely noisy information,

landscapes with high error basins can be advantageous by decreasing average error

relative to landscapes with no easily reachable basins. Because our sequential sessions

combined both limited and unlimited training time and both clean and noisy data, we

see an additional tradeo� between the two sessions. Unlimited training time and well

constrained data favor the fan over the stacked network in minimizing average error,

while limited time and noisy data favor the stacked network over the fan.

2.8 Discussion

In investigating tradeo�s in learning and memory performance that arise from struc-

tural complexity, we found that none of the considered architectures simultaneously

mastered both learning and memory tasks. �is suggests that systems whose function

depends on such simultaneous success might require architectures that are complex

combinations of both parallel and serial structures. Indeed, this inherent sensitivity of

function to underlying architecture may help to explain the high degree of variability

evident in architectural motifs of large-scale biological and technical systems. For in-
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stance, in natural neuronal networks, cortical connection patterns display a variety of

architectural complexities at varying spatial scales. Examples of fan architectures are

found in hub-and-spoke motifs, which form an important part of the small-world ar-

chitecture [41, 42, 43], as well as in the decomposition of cortical network architectures

into subnetworks or modules which may simultaneously process di�erential information

[44, 45, 46, 12, 47]. Moreover, stacked architectures are evident within cortical lamina

[3], within the hierarchical organization displayed in the sequential ordering of the vi-

sual system [48], and within the nested modularity of large-scale cortical connectivity

[49, 12, 47]. Similarly, arti�cial neural networks display complex combinations of fan and

stacked motifs including modularity [50], hierarchy [51], and small-worldness [52, 53].

2.8.1 Parallel versus Layered Architectures

Given the wealth of structural motifs present in real world systems, it is of interest to

�rst isolate the tradeo�s in performance associated with small parallel and layered network

structures which together form the complex architectural landscape of larger systems and

thereby constrain their overall performance. Here we found that the deep, narrow basins

within the error landscape enabled the fan network to produce very accurate solutions.

However, the di�culty of simultaneously adjusting many network connections in order

to escape deep basins may have hindered the ability of the fan network to adapt, a result

that helps explain the susceptibility of parallel networks to the problems of over�tting

and failure to generalize [27]. In contrast, higher variability in the width and depth
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of local minima enabled the stacked network to quickly �nd coarse but generalizable

solutions through the adjustment of a smaller fraction of weights. In combination, these

results support the hypothesis that the number and width of local landscape minima

may increase with increasing number of hidden layers [54], and we suggest that this

variability helps explain why layered networks may require fewer computational units and

may better generalize than parallel networks [55, 56]. However, the impact of structural

variations on functional tradeo�s, for example between speci�city and generalizability,

extends beyond arti�cial network studies and is crucial for understanding the interaction

of learning processes in large scale models of the brain [57]. While parallel architectures

are o�en preferred in arti�cial network studies due to their consistency and accuracy

[54, 56], our results highlight the advantages of layered architectures when performance

criteria favor generalizability and minimization of failure.

2.8.2 Intermediate Architecture

Building on the intuition gained from the two benchmark extremes–fan and stacked–

we further assessed the characteristics of intermediate networks, which can be used to

more directly probe the expected behavior of structurally complex composite systems.

In particular, our intermediate structures were composed of several adjacent stacked

networks and therefore shared principal features of both parallel and layered systems.

Additionally, these networks had slightly larger numbers of connections than the fan and

stacked networks.
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Due to these structural di�erences, the depth of local minima within the intermediate

landscapes displayed more variation than fan minima but more continuity than stacked

minima. As landscape variability was linked to improved generalization capabilities,

a continuous range of basin depths may have enabled the more successful balance be-

tween �exible learning and stable memory observed in the intermediate networks. �is

performance supports the hypothesis that short path lengths (similar to the serializa-

tion h/` [58]) and low connection densities may facilitate simultaneous performance

of information segregation (memory retention) and integration (generalization) within

natural neuronal systems [59]. �ese competing processes are also maintained in natural

neuronal systems and neural circuit models through homeostatic plasticity mechanisms

such as synaptic scaling [60, 61] and redistribution [62, 63], in addition to the rehearsal

methods employed here [32, 33, 34, 35, 36]. Even in the absence of such homeostatic

plasticity mechanisms, we found that the architectural combination of parallel and layered

connectivity helped foster a balance between learning and memory.

2.8.3 Variable Learning Conditions and Network E�ciency

We extended our analysis from the case of unlimited training time, which revealed

information about error landscape structure, to the biologically-motivated case of lim-

ited training time. Comparison of these two cases revealed a tradeo� in performance

between training speed and solution accuracy. In the absence of temporal constraints,

the production of highly accurate representations required longer training times. Sim-

68



ilarly, temporal constraints led to larger solution errors. �is tradeo� between speed

and accuracy has been observed in cortical networks, where emphasis on performance

speed during perceptual learning tasks increased the baseline activity but decreased

the transient task-related activity of neurons within the decision-making regions of the

human brain [64, 65]. Here we found that network architecture played a signi�cant

role in the manifestation of this tradeo�, and the presence of additional hidden layers

helped minimize network susceptibility to changes in training time. In particular, the fan

network demonstrated the greatest change in performance under temporal constraints,

showing a decrease in consistency coupled with occasional catastrophic error values. In

contrast, the intermediate and stacked networks improved consistency and minimized

inaccuracy once training time was limited.

Upon closer inspection, we found that the intermediate networks produced solutions

with increased speed given unlimited time and with increased potential for accuracy

when time was limited as compared to the fan and stacked extremes. �e presence of

additional connections may have in�uenced the number of iterations required to �nd

a solution, or similarly the minimum error found with a �xed number of iterations.

While the graph measure of path length is known to in�uence network e�ciency [58],

these results imply that the number of networks connections may additionally enable the

network to quickly �nd an accurate solution.

In addition to static variations in connectivity, dynamic structural changes such as

synapse formation [66] can facilitate learning and memory processes. �e converse
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case of network degradation, or disruptions to structural connectivity, is also known

to have widespread consequences in functional properties of the brain [67, 68, 69]. A

more detailed study of the relationship between connection number and robustness

could provide additional insight into the e�ects of synapse formation and degradation on

functional performance. Our analysis of error landscape features revealed that di�erent

architectures showed variable localization properties in the eigenvectors associated with

local error minima, and we therefore expect robustness to depend on both the architecture

and the location of growth or damage within the network.

2.8.4 Methodological Considerations

We found that parallel networks su�ered from the creation of excessively detailed

representations of information, an “over�tting” problem that is o�en addressed through

the use of cross-validation [70] and weight regularization [71] techniques. As one goal

of this study was to uncover the structural basis for di�erences in representational ca-

pabilities, it was crucial to understand network behavior in the absence of task-speci�c

cross-validation schemes. Additionally, as the number of parameters was roughly con-

stant across all network structures (and identical for the fan and stacked networks), we

were able to draw comparisons across network architectures in the absence of additional

weight regularization constraints.

While parallel network models have commonly been used in machine learning studies,

multi-layer “deep” networks have recently gained interest due to their potential ability to
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compactly represent (using fewer computational units and parameters) highly variable

functions [55, 56]. �e “deep belief ” framework has been successful for training large,

multi-layered networks, and training methods o�en couple unsupervised, layer-wise

(greedy) training with supervised �ne-tuning [72]. Recent studies of deep belief networks

found that classi�cation performance improved with the addition of layers [54]. In

addition, it was suggested that a reduction in the number of hidden layers would require

an exponential increase in the number of hidden units in order to achieve similar network

performance [56]. �ese results emphasize the capabilities of layered networks and

provide an additional framework in which to explore structure-function tradeo�s.

Although biologically-motivated, the FFBP framework includes several simplifying

assumptions that could be modi�ed to include additional, realistic complexity. First,

we assumed that only the connection weights, analogous to synaptic strengths, were

variable. Real neurons also exhibit changes in intrinsic dynamics [73] that interact with

network architecture to constrain functionality in the brain [74]. Accounting for such

relationships could be particularly relevant, for example, in the study of neuron response

pro�les within di�erent cortical layers [15]. Second, we assumed that signals passed

between nodes had no temporal structure, analogous to representing steady state neuron

�ring rates. Temporally varying signals could be included to study the dependence of

dynamic properties, such as synchronization [75, 76, 74] and signal propagation [77], on

structural organization [78]. Lastly, we assumed feedforward connectivity. �e addition

of recurrent connections could be used to study the relationship between recurrent
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structure and oscillatory functions such as cortical sleep rhythms [79] and oscillation

couplings relevant for associative learning and memory [80]. In each of these directions,

we anticipate that underlying structural complexity will continue to impact performance

through functional tradeo�s.

In summary, di�erent network architectures produce error landscapes with distin-

guishable characteristics, such as the height and width of local minima, which in turn

determine performance features such as speed, accuracy, and adaptability. Inherent trade-

o�s, observed across a range of architectures, arise as a consequence of the underlying

error landscape structure. �e presence of local landscape minima enable greater speed,

more generalizable solutions, and minimization of catastrophic failure. However, these

successes come at the cost of decreased accuracy. Understanding how both the landscape

characteristics and the resulting performance features vary across a range of architectures

is crucial for both understanding and guiding the design of more complex biological and

technical systems.
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Chapter 3

Network Performance Constrained by

Internal versus External Structure

“If you just have a single problem to solve, then �ne, go ahead and use a

neural network. But if you want to do science and understand how to choose

architectures, or how to go to a new problem, you have to understand what

di�erent architectures can and cannot do.”

–Marvin Minsky

3.1 Introduction

�e results of the previous chapter raise several important questions about the ca-

pabilities and limitations imposed by di�erent network architectures on the interaction

between the network and the external environment. Given that both arti�cial and biolog-
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ical learning systems continually interact with and adapt to their environment, it is of

interest to investigate how internal network structure interacts with and takes advantage

of structure in the external environment. �is is particularly relevant in the context

of evolution and development, where systems are able to maintain functionality in the

presence of ongoing internal structural changes.1

In this chapter, we explore several extensions of the network studies introduced in

Chapter 2, which identi�ed tradeo�s in the ability of di�erent network structures to

robustly and e�ciently construct representations of their external environment. We �rst

assess the robustness of the results shown in Figures 2.13, 2.14, and 2.15 to variations in

network size and input training pattern. We then explore two di�erent directions that

focus on the limitations imposed by network structure versus environmental structure.

We �rst explore the extent to which small network modules, such as the single-layer

two-node network that forms the basis of the stacked network, impose limitations on the

performance of larger, composite networks. We then explore the extent to which network

structure interacts with and takes advantage of structure in the external environment.

Together, these directions highlight several avenues of work in progress, each of which

may provide detailed insight into the behavior of larger network structures that must

perform more complex learning and memory tasks.
1Portions of this chapter originally appeared in Hermundstad et al., “Structural drivers of function in

information processing networks,” Signals, Systems and Computers (ASILOMAR), 2011 Conference Record
of the Forty Fi�h Asilomar Conference on , 2011 [81], ©2011 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.
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3.2 Robustness of Functional Tradeo�s to Structural Vari-

ations

As an extension of the results presented in the previous chapter, we evaluate the

performance of larger networks consisting of 18 nodes arranged into con�gurations

with hx` = (1x18, 2x9, 3x6, 6x3, 9x2). We additionally evaluate the representations

produced by networks shown in Figure 2.11 using a permuted set of values for the

original points (x(o),y(o)). �ese variants in network architecture and training data are

highlighted in Figure 3.1.

Figures 3.2, 3.3, and 3.4 show that the results observed in the previous chapter, namely

the qualitative features of network solutions, error distributions, and the resulting learning

and memory tradeo�s, are consistently observed using larger networks and permuted

training points.

3.2.1 Larger Networks

Given a �xed set of training points, the addition of nodes and associated connections

should, in principle, improve network performance because of the increased ratio of

parameters to constraints. However, we �nd that the addition of nodes and connections

does not guarantee an improvement in performance.

We �nd that larger networks produce qualitatively similar solutions to those observed

in smaller networks. �e 1 × 18 fan network �ts points with high order polynomials,
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Original (12-Node) Networks

Larger (18-Node) Networks

Permuted PointsOriginal Points

Figure 3.1: Illustration of Larger Networks and Permuted Training Points. �e previous
chapter considered the performance of �ve 12-node networks (top row). Here, we consider larger,
18-node networks (middle row) arranged into similar con�gurations as the 12-node networks.
We further consider the performance of the 12-node networks trained on a randomly permuted
set of the original training points (bottom row).
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Figure 3.2: Impact of Network Size and Training Function on Network Solutions. �e le� and
right columns show solutions produced respectively by the fan and stacked networks, indicating
for each network the approximation fo (solid curve) of the original points (point markers) and a
subset of approximations {fn} (dashed curves) of the new and bu�er points. Panels (a) and (b) are
identical to those shown in Figure 2.13 of Chapter 2 for the original 12-node networks. Panels (c)
and (d) con�rm that the qualitative features of these solutions are maintained in 18-node networks.
In particular, the 18-node stacked network produces largely linear solutions with sharper kinks
than its 12-node counterpart. Panels (e) and (f) con�rm that the qualitative features of these
solutions are similarly maintained for permuted sets of training points. In this realization, the fan
network again �ts the permuted original points with a high-order polynomial. In comparison,
the stacked network produces a lower order polynomial that averages over the variation in the
permuted points.
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while the 9×2 stacked network produces largely linear �ts. However, the 18-node stacked

network produces sharper nonlinearities than did its 12-node counterpart, an e�ect that

arises from the successive application of the sigmoidal transfer function.

�e distributions of error values computed from these solutions are qualitatively

similar to those produced by smaller networks. �e addition of nodes to the fan network

decreases its maximum error in learning, while the addition of nodes to the stacked

network decreases its maximum error in memory. �is con�rms that the extent to

performance is impacted by the addition of nodes depends on where the nodes are added.

Evaluation of these distribution properties across intermediate networks shows that

the observed tradeo�s between best success and worst failure in memory, and between

the average errors achieved during the �rst and second training session, are consistently

maintained across the full set of larger networks. Larger networks show higher errors

during the �rst session but lower errors during the second session as compared to smaller

networks.

Together, these results show that the addition of nodes produces di�erent e�ects

on network performance depending on whether nodes are added in parallel or serial.

Furthermore, we do not see a uniform improvement in performance with the mere

addition of nodes. Rather, the observed tradeo�s shi� in favor of improvement in the

second training session over improvements in the �rst. It would be interesting, in future

work, to systematically investigate the change in these tradeo�s across larger variations

in network sizes.
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Figure 3.3: Impact of Network Size and Training Function on Error Distributions. �e le�
and right columns respectively show the cCDFs of {E(o)

n } and {E(n)
n }, with the average value of

each distribution marked by a �lled circle. Panels (a) and (b) are identical to those shown in Figure
2.14 of Chapter 2 for the original 12-node networks. Panels (c) and (d) con�rm that the qualitative
features of the cCDFs are maintained in 18-node networks, with the stacked network producing
lower averages errors in learning and memory and lower maximum but higher minimum errors
in memory as compared to the fan network. Panels (e) and (f) con�rm that these qualitative
relationships are similarly maintained using permuted sets of the original points. In particular,
we see less separation in the minimum, maximum, and average errors produced by the fan and
stacked networks using the permuted, as compared to the unpermuted, points.
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3.2.2 Permuted Training Points

In training the fan and stacked networks on a permuted set of the original points, we

�nd that both networks produce solutions that, although quantitatively di�erent, show

similar qualitative features to those produced with the unpermuted training points. �e

fan network �ts the permuted points with a high-order polynomial, and subsequent

solutions show similarly high variance. In comparison, the stacked network produces

a solution to the permuted points that, although exhibiting less striking linearity than

was observed with the unpermuted points, averages over the variation in the points to

produce a low-order polynomial �t.

�e distributions of error values computed from these solutions show similar, albeit

less pronounced, separations in the minimum, maximum, and average error values pro-

duced by the fan versus stacked networks. Both networks produce lower maximum errors

in memory but higher maximum errors in learning as compared to their performance

when training with the unpermuted set of points. Furthermore, we observe a reduced

separation in the average errors, measured with respect to both memory and learning,

produced by the fan versus stacked networks.

By extending this assessment of distribution properties across the set of intermediate

networks, we con�rm that the tradeo�s in learning and memory performance observed

in Figure 2.15 are maintained for permutations of the training points. In comparison to

the behavior observed with the larger networks, we �nd that both sets of tradeo�s become

less pronounced when training on the permuted points. Across networks, we observe a
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decrease in both the minimum and maximum errors in memory, and we similarly see a

decrease in the average errors produced during the �rst versus second training sessions.

Taken together, these results show that performance tradeo�s are observed within

larger networks and with di�erent sets of training points. However, variation in size

versus training input have di�erent quantitative impacts on the extent to which these

tradeo�s are observed.

3.3 Dependence on Internal Structure:

Characterization of Layered Networks

�e results of the previous section suggest that the qualitative relationships between

parallel and layered network performance remain similar across variations in the num-

ber of network nodes. It is unclear, however, as to whether the observed di�erence in

performance across network structures is a consequence of the restricted width or the

increased height of layered relative to parallel networks. In an e�ort to decouple these

dependencies, we have begun analyses on the performance of the stacked network across

variations in network height, keeping the width �xed at ` = 2.

We train 7 stacked networks, with h = 1, 2, 3, 6, 9, 12, 13, on the original six points

{x(o), y(o)} introduced in Chapter 2. Each network is given unlimited training time (105

iterations) to represent the original points, and each training session is repeated 1000

times to generate a distribution of error values measured from these representations.
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Figure 3.4: Impact of Network Size and Training Function on Performance Tradeo�s. Trade-
o�s between best and worst memory performance (le� column) and between �rst and second
training sessions (right column), where network performance measured with respect to the errors
{E(o)

n } and {E(n)
n }. Panels (a) and (b) are identical to those shown in Figure 2.15 of Chapter 2

for the original 12-node networks. We see that the observed tradeo�s in learning and memory
are consistent across (c,d) larger networks and with (e,f) permuted training points.
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Figure 3.5: Dependence of Error Distributions on Stacked Network Size. Distributions and
extremal values of error {E(o)

o } produced by stacked networks with a �xed width ` but with
increasing height h. �e single layer (2 node) network produces nearly constant error values,
while all other networks produce a range of error values. None of the networks exceed the
maximum error produced by �tting the points with a horizontal line. �e probability of �nding a
minimum versus maximum error value, denoted respectively by the probabilities P (E = Emin)
and P (E = Emax), are shown in the righthand panels and are calculated from the frequency
of errors Emin = 0 and Emax = .1131. �e probability of achieving a minimum error value
increases for increasing h ≤ 3 but decreases for increasing h > 3. In comparison, the probability
of achieving a maximum error value steadily increases for increasing h.
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Figure 3.5 shows the distribution of error values produced by each of the 7 networks.

For all but the single-layer network, networks produce a wide range of error values that

span from a minimum value Emin = 0 to a maximum value Emax = Eline = .1131

(minimum error achieved by �tting the points with a horizontal line). While networks

with comparable numbers of nodes were shown in the previous chapter to produce error

values exceeding Eline, the �nding that none of the stacked networks exceeds this value

suggests that the maximum error is �xed by the width, and not the height, of the network.

As all but the single-layer network span the full range of error values, we can compare

the frequency with which each network produces the best- versus worst-case solutions

by computing the probabilities Pmin = P (E = Emin and Pmax = P (E = Emax) (right

panels of Figure 3.5). We �nd that increasing the network height h improves performance

for h ≤ 3 by increasing the probability Pmin of zero-error solutions while keeping Pmax

near zero. In contrast, increasing h > 3 worsens performance by both decreasing

Pmin and increasing Pmax. Together, these results suggest that, for a given width, there

is a network height h ≥ 1 that maximizes performance. Furthermore, the observed

monotonic increase in Pmax for increasing h suggests that there is a �xed limit above

which stacked networks can only produce linear solutions.

�ese results motivate the identi�cation of scaling relationships across variations in

the network height h. In an e�ort to isolate these relationships, we shi� our focus to the

single-layer (1× 2) and double-layer (2× 2) networks. Comparison of the distribution of

error values produced by these two networks show that each network produces a relatively
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Figure 3.6: Restricted Solution Space of Small Stacked Networks. Comparison of solutions
and error values produced by single-layer versus double-layer networks. Both networks produce
discrete sets of error values, which correspond to distinct sets of solutions (indicated to the le�
and right of the main distributions). �e single-layer network produces four sets of solutions
(right panels), while the double-layer network produced �ve sets of solutions (le� panels).
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discrete set of errors, and these errors correspond to qualitatively distinct solutions (Figure

3.6). Furthermore, the solutions produced by the single- versus double-layer network

show similarities in qualitative features. For example, the third set of solutions produced

by the double-layer network shares the same qualitative features as the second and third

solutions produced by the single-layer network. �ese similarities suggest that double-

layer network solutions could be composed of linear combinations of single-layer network

solutions. �is is by no means an obvious statement, as the double layer network in an

inherently non-linear extension of the single-layer network. Rather, this could only be

achieved through constrained relationships in weight space.

To gain a better understanding of how single- versus double-layer network solutions

could relate to each other through constrained weight space relationships, we examine the

combinations of connection weights that produce the sets of solutions shown in Figure

3.6. �ese combinations are shown in Figures 3.7 and 3.8 for the single- and double-layer

networks, respectively.

Inspection of Figure 3.7 reveals that the set of four single-layer solution types are

produced by very constrained weight-space relationships. Furthermore, solutions with

similar qualitative features are in closer proximity in weight space. �e second and

third solution sets, which both show tighter kinks than the �rst and fourth solution

sets, are characterized by smaller input weights but larger output weights. In addition,

the magnitudes of the two output weights tend to be proportional to one another. In

comparison, the �rst and fourth solution sets show larger input but smaller output weights,
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Figure 3.7: Restricted Weight Space of Single-Layer Network. Relationships between weights
in the single-layer network that produce the sets of solutions shown in the right panels of Figure
3.6. Top row: projection of �rst input weight onto second input weight (le�) and bias weight
(right). Bottom row: projection of �rst output weight onto second output weight (le�) and bias
weight (right). For all weight combinations, the weight space is sparsely sampled. Solutions with
similar qualitative features show similar relationships in weight space.
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and weight strength tends to be localized across variations in one output weight rather

than spanning linear combinations of both output weights.

Comparison of Figures 3.7 and 3.8 reveals that the double-layer network is much

less constrained in the weight-space relationships that it exhibits. �e input and output

layers show more constrained localization of the weights than does the hidden layer,

which shows a high degree of intermixing between weights. Comparison between the

one-layer and two-layer sets of weight space relationships suggests the composition of

two-layer solutions from one-layer solutions may be achieved by di�erent combinations

of one-layer weight-space relationships .

Together, these �ndings provide insight into the limitations of performance imposed

by small network modules. As this work is still in progress, future work could provide a

more quantitative assessment of the relationships between the solution space produced

by single- and double-layer networks. While it may not be possible to predict the solution

space of double-layer networks from the performance of single-layer networks, it may be

possible to identify constraints on the size of solution space that could be achieved, and

similarly the localization or delocalization of the corresponding occupation in weight

space. �e identi�cation of such a recursion relationship between networks of increasing

numbers of layers would be extremely useful in predicting the performance of larger

network structures.
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Figure 3.8: Restricted Weight Space of Double-Layer Network. Relationships between weights
in the double-layer network that produce the sets of solutions shown in the le� panels of Figure
3.6. Top row: projection of �rst input weight onto second input weight (le�) and bias weight
(right). Middle row: projection of �rst hidden weight onto second hidden weight (le�) and bias
weight (right). Bottom row: projection of �rst output weight onto second output weight (le�)
and bias weight (right). Comparison with Figure 3.7 shows that the double-layer network more
densely samples weight space than does the single-layer network. Across solutions produced by
the double-layered network, the input and output weight space is more sparsely sampled than is
the hidden weight space.
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3.4 Dependence on External Structure:

Higher-Dimensional Training Functions

Both the previous sections and the previous chapter focused on the sequential learning

of one-dimensional functional approximations. Increasing the complexity of the training

pattern introduces new questions about the environmental features to which the network

is sensitive. One can ask, for example, whether di�erent features of an image are more or

less relevant for successful learning versus successful memory, and whether these features

are processed within di�erent structural components of the network.

�e direct extension of our analysis from one- to two-dimensional training func-

tions would involve training networks on a string of raw pixel intensities (Figure 3.9),

where pixel intensities are analogous to the y-values of the training points in Figure 2.13.

However, this approach necessarily eliminates the spatial relationships between pixels

that could in principle carry important information about the structure of the training

function. Sensitivity to di�erent spatial features, such as spatial correlations between

pixels, spatial frequencies, and boundaries between groups of pixels, may di�erentially

impact the ability of a network to learn and remember the training function. Furthermore,

as suggested by our previous �ndings, di�erent network structures may vary in their

sensitivity to these di�erent features. By simultaneously varying both internal network

structure and external environmental structure, we can probe the extent to which internal

network features take advantage of external environmental features during learning. �e
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Figure 3.9: Illustration of Training Task. We choose to train networks on an 8 × 8 pixel
greyscale image of the letter “F”. As a basis network module, we consider a 18-node, 3-layer
fully-connected network. Image pixels are fed sequentially into the network, with coordinates xp
and yp fed into separate input nodes. �e output of the network, when probed across continuous
x and y values, produces a functional approximation of the training image. In addition to the
standard cost EO assigned to the raw pixel intensity values, and we assign an additional cost EdO
to spatial relationships between pixels. As the name would suggest, EdO measures the error in
the spatial derivative of pixel intensities measured from a given pixel across its four face-adjacent
pixels. �e total cost is a weighted combination of EO and EdO, where the weighting parameter
α speci�es the contribution from the raw pixel cost EO.
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extension of these ideas to competitive learning and memory processes, not discussed

here, is a potential avenue for future research.

To this end, we extend our one-dimensional training function to a two-dimensional

image. �e spatial dimensions of this image are xp × yp, which respectively give the

number of pixels along the x- and y-dimensions and are analogous to the xd values used

in the one-dimensional case. �e pixel intensity z(x, y) is analogous to the previously-

used values yd and can be either binary (for a black and white image) or continuous (for

a greyscale image). We consider an 8× 8 grid of pixels, and we select pixel intensities to

draw the letter “F”, as shown in Figure 3.9. We choose to use the pixel values of 0.3 and 0.7,

which lie well within the dynamic range of the sigmoid function, rather than the binary

values of 0 and 1, which lie at the sigmoid extremes. Extension to more complicated

images is the subject of future work.

Within our network model, the sensitivity to environmental features is controlled by

the error E. �e assignment of an error to spatial, rather than raw, input information

alters the features of the error landscape such that navigation in the gradient direction

moves the network toward regions of parameter space with lower error in the spatial

properties of the external environment. Such an error then serves as a measure by which

we can assess successful learning of spatial, rather than raw, information.

As a �rst step toward understanding the role of spatial information on learning and

memory, we consider the case in which the total error, which we will now refer to as

the cost C , is computed from a weighed combination of raw and spatial information
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(illustrated schematically in Figure 3.9):

C(ω, α) = αEO(ω) + (1− α)EdO(ω), (3.1)

where EO is the error in the raw pixel intensities, analogous to the error previously

assigned to our one-dimensional training functions:

EO(ω) =
1

2

Nd∑
d=1

(zd(ω)− zd)2 . (3.2)

�e errorEdO could represent any spatial information of interest. We choose to assign

to EdO the error in the spatial derivative of face-adjacent adjacent pixel intensities:

EdO(ω) =
1

2

∑
n.n.

(
∂z(ω)

∂r
− ∂z

∂r

)2

(3.3)

�e parameter α controls the relative weighting between spatial and non-spatial

errors. In the case of α = 1, the total cost C reduces to the least squares error in the

output, as was used in Chapter 2.

�e inclusion of a weighting parameter between di�erent types of information in-

troduces several questions. Should this weighting be �xed, and if so, at what value? If

this weighting is variable, should it vary temporally during the learning process, spatially

across the network structure, or evolve according to some internal or external rule? By

assessing the performance of the network across variations in this weighting, we can

explore whether performance is dependent not only upon sensitivity to di�erent types of

information, but also upon the time and location at which this sensitivity is introduced.
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Figure 3.10: Structural versus Functional Modularity. Possible serial and parallel arrange-
ments of two fully connected, 3x6 network modules. Networks can show structural modularity
(le� column), functional modularity (middle column), or both structural and functional mod-
ularity (right column). Structural modules are distinguished by a topological discontinuity in
connectivity. Functional modules are distinguished by the implementation of a di�erent cost
function to the update of weights within each module.

To address these questions, we assess the performance of networks constrained to

move within a �xed error landscape CL = .5 ∗ EO + .5 ∗ EdO that is equally weighted

toward raw versus spatial information. �e enables us to use the same measure of

performance, namely the �xed external cost CL, across all networks.

Internal sensitivity to raw versus spatial information can then be controlled by the

internal cost C given by Equation 3.4, a quantity that determines how the network

navigates the �xed landscape CL. Variations in α alter the landscape direction along

which network weights are updated. In this way, local sensitivity, as governed byC(ω, α),

can di�er from global sensitivity, as governed by CL(ω).

We investigate network performance across di�erent implementations of α by com-
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bining variations in α with variations in structural and functional modularity. �is

approach allows us to vary both the location and degree of internal sensitivity to spa-

tial information implemented within the network. We consider the simple case of two

fully-connected network modules, each of size h× ` = 3× 6, that can be structurally or

functionally distinct and can be arranged in parallel or in series. If arranged in parallel,

structurally distinct modules are connected at the input and the output layer but are not

connected within hidden layers. If arranged in series, structurally distinct modules are

connected via one intermediate node that collects all output from module and relays it as

input into the second module (Figure 3.10).

Functional modularity is de�ned such that distinct modules obey di�erent cost weight-

ing schemes and are therefore distinguished by their sensitivity to raw versus spatial

information. When implemented within the network, functional modularity equates to

the update of module-speci�c connection weights along di�erent directions within the

error landscape.

As mentioned previously, there are several ways in which we could choose the pa-

rameter α. Figure 3.11 highlights possible weighting schemes in α, along with possible

con�gurations of structural and functional modularity in which these weighting schemes

could be implemented. We distinguish between four separate cases in which two modules

are (i) structurally and functionally integrated, (ii) structurally distinct but functionally

integrated, (iii) structurally integrated but functionally distinct, and (iv) structurally and

functional distinct. We further distinguish between cases in which the weighting is �xed
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during the training process (α = [0, .5, 1]) from those in which the weighting varies as a

function of iteration number (α = α(i)). We �rst prescribe a speci�c function α(i) that

is either monotonically increasing or decreasing in i, such that the network is smoothly

biasing toward either raw or spatial information as training progresses. We later suggest

a method by which α could evolve during the learning process.

Together, the number of possible arrangements of structural and functional mod-

ules, combined with the number of potential weighting schemes for α, gives a wide

range of possible network con�gurations to assess. However, we �nd that two types of

con�gurations are highly unsuccessful in learning external representations.

�e �rst unsuccessful con�guration is the set of structurally distinct modules arranged

in series (regardless of α). �e inability of this con�guration to learn information likely

arises as a result of combining and redistributing network outputs, which creates an

information bottleneck that limits the impact of weight adjustments. As a test of the

e�ect of this bottleneck, future work could incrementally decrease the number of nodes

in a intermediate layer that lies between the two modules. �is could be used to identify

the minimum degree of structural separation that still allows for successful learning.

�e second unsuccessful con�guration is the set of modules that are initially (or

inde�nitely) sensitive solely to spatial information. BecauseEdO contains no information

about absolute pixel intensity, the navigation of the error landscape based solely on

spatial information can lead the network to produce solutions that do not mirror absolute

intensity values.
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Figure 3.11: Possible Schemes for Assigning Variable Costs. Top row: we consider three
possible schemes for varying the weighting parameter α as a function of iteration number Niter:
�xed, temporally varying, and evolving. Below each scheme is an illustration of the relative
contribution to the cost from raw pixel intensity versus spatial derivatives in pixel intensity.
Pairs of solid and dashed lines represent complementary schemes. Bottom row: we implement
these schemes within di�erent types of the structurally and functionally homogeneous and
inhomogeneous networks shown in Figure 3.10. Functionally distinct modules, which need not
be structurally distinct, implement di�erent schemes for varying α.
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Role of Spatial Information During Training

Figure 3.12: Impact on Learning of Sensitivity to Spatial Information. Representation of
training function (letter “F”) at di�erent point in the training process for α = 1 (blue) and
α = 0.5 (green). �e inclusion of spatial information increases the speed with which the network
learns the training information and results in a more accurate �nal representation.

Across the remaining con�gurations, we �nd that the functional consequence of

including sensitivity to spatial information vary depending on how and where this sensi-

tivity is implemented within the network.

As a preliminary assessment of the role of spatial sensitivity, we compare the perfor-

mance of a single network module whose internal cost is uniformly sensitive (α = .5)

versus insensitive (α = 1) to spatial information. Figure 3.12 compares, between these

two cases, the cost CL as a function of iteration number i averaged across 100 trials. We
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see that sensitivity to spatial information improves the rate of learning (rate of decrease

in cost) and results in a more accurate �nal representation of the training function.

Given that sensitivity to spatial versus raw information can improve performance

when implemented within a structurally homogeneous network, we further explore

whether this improved performance depends on the structural con�guration of the net-

work. Figure 3.13 compares three cases in which the functional modularity is held �xed,

with each of two functional modules either increasing or decreasing in α from α = .5.

Across these three cases, we vary the con�gurational arrangement of functional modules

between a serial arrangement (structurally homogeneous) and parallel arrangement (both

structurally homogeneous and inhomogeneous).

We �nd that the network shows poor performance when it exhibits both structural

and functional modularity. In comparison, both the serial and parallel arrangements of

functional modules perform well when implemented within a structurally homogeneous

network. However, the parallel con�guration of functional modules has a higher rate of

learning than the does serial con�guration, and the �nal output more closely resembles,

from visual inspection alone, the desired output “F”.

Together, these results show that sensitivity to spatial information improves the rate

of learning, and the extent to which sensitivity improves overall accuracy depends on how

it is implemented within the network. �is suggests that varied sensitivity to di�erent

types of external information is important for successful learning and may further impact

ability of a network to retain information in subsequent training sessions. However,
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Figure 3.13: Performance of Structurally- versus Functionally-Distinct Modules. We com-
pare three network con�gurations that exhibit varying degrees of structural and functional
modularity (le� column), with functionally distinct modules indicated by solid versus dashed
lines. For all three network con�gurations, we implement the weighting scheme shown in the
upper right. At the beginning of the training session, the cost of raw and spatial information
are equally weighted within both modules (α = .5). As training progresses, one module biases
toward raw information (solid curve), while the second module biases toward spatial information
(dotted curve). Comparison of network performance reveals that both structurally uniform
networks achieve low �nal errors, while the structurally modular network plateaus at a high
error value. Comparison of the two structurally uniform networks reveals that, although both
networks achieve high accuracy, the parallel con�guration achieves a representation that more
closely resembles the letter “F”.
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biological systems are marked by their ability to dynamically interact with and adapt

to their surroundings. �is suggests that internal learning rules should be continually

evolving during the learning process rather than following a �xed prescription.

One way in which this adaptation could be achieved is by allowing α to evolve during

training, whereby the network is allowed to continually adjust its sensitivity to spatial

versus nonspatial information. We propose one possible scheme for the evolution of α,

in which α(i) is updated at each iteration in order to bias toward the larger of the two

error components in our cost function:

α(i+ 1) =


α(i) + dα(EO − EdO), if EO > EdO

α(i)− dα(EdO − EO), if EO < EdO

(3.4)

where dα is a parameter that sets the rate of evolution. �is evolution process enables

α to act as a reinforcement plasticity mechanism that strengthens bene�cial sensitivity

and weakens detrimental sensitivity.

�is work is still in its initial stages, and we have yet to understand how network

performance di�ers between the cases in whichα(i) is prescribed versus allowed to evolve

dynamically. Importantly, this could help understand how sensitivity to di�erent types of

information changes (or should ideally change) at di�erent points in the learning process.

Furthermore, we are only beginning to understand interactions between structural and

functional modularity, and further investigation could explore more complex interactions

between di�erent modules. Combined, these studies provide insight into the interaction
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between internal and external structure, and they inform learning models in which

systems are di�erentially sensitive to many types of information.

3.5 Discussion

�e varied work presented in this chapter suggests several possible directions for

future research. As adaptability and evolvability are inherently important biological

processes, it is of signi�cant importance to understand how these processes are encoded in

network structure and function. Furthermore, as these processes are implemented within

a given network architecture, it is of equal importance to understand the limitations

imposed by this architecture. Future work could solidify the relationships between

network modules of varying sizes, as these could be combined to created a diverse range of

complex architectural motifs. Such studies could be complimented with a more thorough

investigation of the di�erent types of information to which a network is sensitive, such

as spatial frequencies and higher order correlations, which would further inform our

understanding of the external environmental features that shape and constrain adaptable

system function.
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Chapter 4

Structural and Functional Connectivity

of the Human Brain

“�e number of possible “on-of ” patterns of neuronal �ring is immense,

estimated at a staggering ten to the millionth power. �e brain is obviously

capable of an imponderably huge variety of activity; the fact that it is o�en

organized and functional is quite an accomplishment!"

–Daniel J. Siegel, from �e Developing Mind, 1999

4.1 Introduction

Human cognitive function is supported by large-scale interactions between di�erent

regions of the brain. �e anatomical sca�olding that mediates these interactions can be

described by a structural connectome that maps the spatial layout of hard-wired white
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matter tracts [82]. Structural connectivity, de�ned by the physical properties of these

direct anatomical connections, supports the relay of electrical signals between brain re-

gions. Functional interactions can similarly be described by a functional connectome that

maps the strength of task-dependent communication between brain regions. Functional

connectivity, de�ned by coordinated changes in energy consumption that support local

neural activity [83], is thought to re�ect the strength of anatomically-mediated signal

transmission between brain regions. However, the indirect inference of structural and

functional connectivity from di�erent experimental techniques raises two complemen-

tary questions about the quantitative relationships between structural and functional

connectomes: (i) to what extent can the task-dependent strength of functional interaction

between brain regions be predicted from structural connectomes, and (ii) to what extent

can the hard-wired properties of anatomical connections be inferred from functional

connectomes?

Connectomes, whether examined at the neural or systems level, are networks whose

structural properties, such as the length, number, and spatial location of connections,

can di�erentially impact functional properties, such as the strength of local or global

network activity. In the human brain, long-distance connections are thought to assist

in the integration of multiple sensory modalities [84], while local dense connections

are thought to support a balance between information integration and segregation [59].

However, the extent to which variations in structure and function are di�erentially related

on a large scale in the human brain is not well understood. Previous studies of structure-
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function relationships have described the properties of speci�c anatomical connections

[43] that mediate interactions between select brain regions [85, 86, 87, 88]. Similar

analyses of large-scale structural and functional networks have been conducted across

parcellations of the cortical surface [89] but have been limited to small sample sizes and

to resting-state neural activity.

To address this gap in understanding, we combine the speci�city of detailed anatomi-

cal and functional analysis with the statistical power of 84 subjects measured noninvasively

at rest and during the performance of attention- and memory-demanding tasks. Func-

tional interactions are predicted from di�usion tensor imaging (DTI) measurements

of white matter connectivity, while structural properties are inferred from functional

magnetic resonance imaging (fMRI) measurements of changes in blood oxygenation

level dependent (BOLD) signals [90]. �is two-pronged approach isolates consistent

and complimentary relationships between structural and functional connectivity across

subjects and brain states.

In what follows, we provide an overview of the principles behind magnetic resonance

imaging that enable the inference of structural and functional pathways in the brain.

We then introduce a novel set of multimodal approaches for relating structural and

functional connectivity in human brain networks. We compare the subject-dependent

structural measures of tract length and tract number, thought to di�erentially impact

sensory processing [84, 59], with the subject-dependent functional measures of resting-,

attention-, and memory-state BOLD correlations, thought to re�ect the coordinated and
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task-dependent control of di�erent brain regions. We further distinguish between the

subject-independent measures of inter- versus intra-hemispheric connectivity, known

to exhibit di�erent structural properties that could impact functional interactions (e.g.

[91]). Together, these delineations enable (i) the prediction of task-dependent functional

connectivity from underlying anatomical properties and (ii) the inference of structural

connectivity from functional interaction strength. Resting-state function is found to

be supported by local dense intra-hemispheric connectivity and length-independent

inter-hemispheric connectivity. In comparison, task-driven function is found to be

supported by long-range intra-hemispheric connectivity. �ese relationships, consistently

maintained across subjects, provide insight into the architectural design of the human

brain and the functional capabilities and constraints imposed by its architecture.

4.2 Magnetic Resonance Imaging

�e problem of mapping the structural and functional architecture of the human brain

faces signi�cant experimental limitations because, with the exception of postmortem

studies or rare cases of medical monitoring, we do not have direct access to the brain (for

good reasons–imagine the implications of such direct access). Instead, we rely on non-

invasive measurements acquired via magnetic resonance techniques. Such noninvasive

techniques are advantageous because they enable the acquisition of neural data in awake,

behaving subjects without damage to brain tissue. �is disadvantage, however, is that the

properties of brain tissue must be inferred indirectly from these measurements. �e ques-

106



tion then arises as to what these techniques are measuring, and how these measurements

inform our understanding of human brain architecture.

To understand how magnetic resonance techniques provide estimates of structural

and functional brain connectivity, we �rst review the physics behind nuclear magnetic

resonance (NMR) on which magnetic resonance imaging (MRI) relies.

4.2.1 Overview of MRI Principles

MRI techniques are used to reconstruct the average magnetization of hydrogen atoms

within localized regions of tissue. �ese techniques are particularly sensitive to variations

in so� tissue found, for example, in the heart and brain. Measurements are acquired from

localized volumes of tissue, or voxels (volume-pixel), within narrow tissue slices, and

slices are later combined to reconstruct three-dimensional tissue properties.

�ese measurements rely on the principle of NMR, which describes the precession

of nuclear spins in an external magnetic �eld about the �eld vector B at a frequency

proportional to the �eld strength |B|. MRI techniques measure nuclear magnetization

by �rst aligning nuclear spins with an external magnetic �eld ( 1.5 − 3T ) and then

perturbing spin alignment through the controlled application of electromagnetic pulses.

�e perturbed spins create local variations in magnetic �eld strength that can be detected

by external antennas.

To illustrate this process (see Figure 4.1), consider a spin aligned along the longitudinal

direction de�ned by the external �eldB. �is spin can be excited by an electromagnetic
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Figure 4.1: Relaxation of Longitudinal and Transverse Magnetization. A radio frequency (RF)
pulse tuned to the appropriate frequency can be used to excite nuclear spins, thereby anti-aligning
the spins with the external magnetic and inducing phase precession. Over time, individual spins
will lose energy via spin-lattice interactions, and they will lose phase coherence via spin-spin
interactions. Given a local spin density, energy loss results in a net increase in longitudinal
magnetization, while phase decoherence results in a net decrease in transverse magnetization.
�e timescales over which the longitudinal and transverse magnetization relax are termed the T1
and T2 timescales, respectively.
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pulse of radio frequency (RF) to a higher energy state. �is pulse can act to �ip the

spin, such that it is antialigned with and precesses about the longitudinal direction. �is

precession introduces a new transverse component of magnetization. Once the RF pulse

has passed, the spin will decay back to its original state through energy exchanges with

the local surrounding lattice of molecules, and it will similarly lose phase coherence with

other spins. Given a local spin density, this will result in a gradual increase in the net

longitudinal magnetization, and a gradual decrease in the net transverse magnetization.

�e timescale over which the longitudinal magnetization returns to 1− 1/e = 63% of

its original value is de�ned to be the T1 relaxation timescale, which re�ects local spin-

lattice interactions. Similarly, the timescale over which transverse magnetization decay to

1/e = 37% of its original value is de�ned to be the T2 relaxation timescale, which re�ects

local spin-spin interactions. T1 and T2 timescales vary between di�erent tissue types, (e.g.

liquid has relatively long T1 and T2 timescales, while fat has short timescales), enabling

the di�erentiation between di�erent tissue types based on the relaxation properties of

local magnetization.

�e repeated application of RF pulses can be used to control local changes in mag-

netization. Consider, for example, two tissues (A and B) with di�erent T1 relaxation

timescales. Given a su�cient amount of time following the �rst RF pulse, both tissues

will have fully returned to their original longitudinal magnetization. However, if a second

RF pulse is applied a�er a repetition time TR < T1, the magnetization of the two tissues

will have relaxed to di�erent values, and they will therefore show di�erent responses to
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the application of the second pulse. In this way, the time TR between pulses can be used

to control the relative magnetization within, and therefore the relative signal transmitted

by, di�erent tissues.

In one application of this technique (Figure 4.2), the initial RF pulse is set to align the

spin with the transverse plane, such that there is no longitudinal magnetization (90◦ RF

pulse) . A�er the the pulse is shut o�, precessing spins will begin to lose phase coherence

over a timescale T2* (T2 star). A second pulse set to 180◦, applied a�er an echo time

TE, will cause the spins to reverse the direction of their precession such that they regain

phase coherence. �is refocusing process, called a spin-echo, allows for the reapplication

of RF pulses needed to amplify the transmitted signal. Although this spin-echo pulsing

can be repeated many times, the net signal decays over a timescale T2 > T2∗.

�e controlled measurement of transverse magnetization via RF pulsing underlies a

wide range of neuroimaging techniques. We focus on two techniques, di�usion tensor

imaging (DTI) and functional magnetic resonance imaging (fMRI).

4.2.2 Di�usion Tensor Imaging

Di�usion tensor imaging (DTI) measures variations in the local microstructure of

brain tissue. Microstructural variations alter the di�usion of water molecules in the brain,

which can in turn be measured via MR techniques.

Water molecules in the brain di�use via Brownian motion. In the absence of mi-

crostructural tissue variations, this di�usive process would be random and would not
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Figure 4.2: Spin-Echo Excitation. �e application of a 90◦ RF pulse polarizes nuclear spins in
the transverse plane and causes them to coherently precess in the counterclockwise direction.
Phases begin to decohere over the T2* timescale, a�er which a second 180◦ RF pulse reverses
the direction of precession and causes the phases to refocus in a “spin-echo” response. �is is
followed by a second decoherence, a�er which the process can be successively repeated. Each
spin-echo serves to amplify the total signal transmitted by the transverse magnetization. However,
the amplitude of each individual spin-echo decreases in magnitude over the T2 decoherence
timescale.
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Figure 4.3: Di�usion Tensor Imaging. DTI measures the preferential di�usion of water
molecules in di�erent tissues. In a uniform tissue, water would show no preferential di�u-
sion. However, when microstructural tissue variations are present, as occurs at the boundary of
white matter tracts, water di�uses more rapidly along the tract versus perpendicular to the tract.
Under the application of a pulsed magnetic �eld gradient, water molecules that have remained
stationary will show perfect rephasing, while molecules that have traversed longer distances will
show partial or no rephasing. �e relative di�erence in phase coherence can then be detected by
the MR scanner.
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exhibit a preferential di�usion gradient. As the rate of water di�usion varies within

di�erent types of brain tissue, however, preferential di�usion gradients can be observed

at tissue boundaries.

�is di�usion anisotropy is particularly useful for identifying the boundaries of white

matter tracts in the brain. �ese tracts consist of bundles of myelinated axons along which

water di�uses more rapidly than it would in a orthogonal direction. DTI measurements

infer the direction and degree of net di�usion within individual tissue voxels, which can

then be used to reconstruct anatomical �ber pathways.

�e di�usive properties of molecules can be measured by applying a 90◦ RF-pulsed

magnetic �eld gradient, which aligns nuclear spins in the transverse plane and causes

precession at di�erent rates. �e application of a second 180◦ RF-pulsed �eld gradient

can then be used to realign the spins, as described previously. If water molecules have

moved in time between the �rst and second pulses, this realignment will be imperfect,

resulting in a detectable MR signal. Strongly preferential di�usive processes, such as

those along while matter tracts, produce strong local signals that can be used to map

tract boundaries (Figure 4.3).

4.2.3 Functional Magnetic Resonance Imaging

Functional MRI (fMRI) measures local changes in blood oxygenation, which are in

turn thought to re�ect local changes in neural activity.

�e relationship between neural activity and blood oxygenation can be understood
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in terms in local energetics. Active brain cells require more energy, in the form of

glucose and oxygen, than inactive brain cells. �is energy is delivered to cells in the form

of oxygenated blood, which results in a local (2-3mm) increase in blood �ow, a local

expansion of blood vessels, and a local net increase in oxygenated hemoglobin Hb (the

oxygen carrier in blood). Changes in neural activity can therefore by characterized by

changes in oxygenated blood �ow to localized brain regions.

Changes in blood oxygenation are detectable by MRI measurements due to the

di�erences in magnetic properties between oxygenated and deoxygenated blood. De-

oxygenated blood (deoxyhemoglobin, dHB) is paramagnetic, while oxygenated blood

(hemoglobin, Hb) is diamagnetic. dHB therefore interacts with and distorts the local

magnetic �eld such that nuclear spins decohere more quickly in the presence of dHB

than in the presence of Hb. As a result, regions with higher Hb content produce stronger

MR signals, enabling the mapping of local changes in blood oxygen content (Figure 4.4).

4.3 Network Approaches for Studying the Human Brain

�e magnetic resonance imaging measurements discussed in the previous section are

used to measure the local properties of brain tissue. Variations in these properties can be

related to underlying structural inhomogeneities, such as the physical boundaries between

axons and their surrounding tissue, that a�ect the translational motion of molecules.

Similarly, local tissue properties can re�ect functional responses, such as the degree of

energy consumption, that a�ect the local density of di�erent types of molecules. Our goal
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Figure 4.4: Functional MRI. fMRI measures �uctuations in blood oxygen content, which re�ect
local changes in neural activity. When neurons become more active, they require more oxygen,
which is carried in Hemoglobin (Hb) in the bloodstream. �is results in a local expansion of blood
vessels with a higher content of Hb relative to dHb (deoxygenated hemoglobin). As Hb and dHb
di�er in their magnetic properties, the average magnetization in a region with Hb content shows
slower phase decoherence than does a region with high dHb content. �is relative di�erence in
phase coherence can then be detected by the MR scanner.

is to use these local measurements to gain an understanding of the large scale structural

and functional properties of the human brain.

Recall that DTI measurements record local di�usion gradients within a single tissue

voxel, and these gradients re�ect the boundary between white matter (composed of

myelinated axons) and the surrounding tissue. If di�usion gradients in two adjacent

voxels are largely overlapping, the assumption is made that the axon boundary extends

between voxels along this gradient direction. Tractography, a computational method that

searches for signi�cant gradient overlap, can be used to reconstruct large-scale white

matter pathways linking di�erent regions of the brain from voxel-wise measurements of

water di�usion.
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Similarly, recall that fMRI measurements record local �uctuations blood oxygenation

within single tissue voxels, quanti�ed in terms of a blood oxygen level dependent (BOLD)

signal. �is signal varies over time and during the performance of di�erent tasks (for

example, moving an arm with elicit increases in the BOLD signal within the motor cortex).

�e activity of a local region of the brain can be described by the regional mean time

series averaged over constituent voxels, and interactions between brain regions can be

described by correlations between regional mean time series. In this way, the coordinated

control of di�erent brain regions can be constructed from voxel-wise measurements of

�uctuations in blood oxygenation.

Given that communication between brain regions is mediated by physical connec-

tions, we expect functional interactions, as measured via fMRI, to re�ect the existence

of structural connections, as measured via DTI. While one would no doubt question

that the function of the brain should be re�ective of its underlying structure, neither the

extent to which this relationship can be observed experimentally nor the speci�c features

of these relationship are known. �e identi�cation of such large-scale structure func-

tion relationships is therefore important for both assessing the experimental techniques

used to acquire these measurements and for understanding the speci�c constraints that

anatomical architecture imposes on human cognitive function.

Importantly, the brain is neither �xed in structure nor static in function. Anatomical

pathways can di�er between individuals, as can the ways in which these pathways are

utilized for di�erent cognitive functions. Structure can be altered during development,
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learning, and aging and can be disrupted by neurological disorders, each of which can

have signi�cant functional consequences. �e identi�cation of robust relationships be-

tween structural and functional brain connectivity is therefore made di�cult both by

the variability in these properties observed across individuals and in the experimental

cost of neuroimaging measurements required to obtain a signi�cant cross-section of the

population. Recent analyses of large-scale connectivity have therefore been limited in

statistical power and in scope to a small number of subjects, to speci�c brain regions, and

to resting-state activity. As a result, our comparison of widespread structural and func-

tional connectivity across 84 subjects across di�erent task states signi�cantly contributes

to the current understanding of human brain architecture.

We rely on power tools drawn from network theory for the assessment of structure-

function relationship within and across individuals. �e nature of the experimental

measurements at hand lends itself to network descriptions, for which localized brain re-

gions are represented as nodes, and the strengths of interaction (structural or functional)

between brain regions are represented by weighted, undirected connections between

nodes. In the following subsections, we describe the speci�c methodological consid-

erations needed for mapping the human brain onto structural and functional brain

networks.

117



Region Selection

0%

100%

0%

C  s

100%

1/
 d

  c
N  s, c

C  s,c

 

 
C  s

D
is

ta
nc

e 
1/

 d
Scaled Number   N  s

10

1

0

C
  s

1/dT

NT

partitioning in   N   does use structural information

large    N  s small    N  s

small 1/d

large 1/d

partitioning in 1/d  does not 
use structural information

Nonstructural Selection

Structural Selection Relating Structure and Function

regions selected
via structural measures regions selected

via nonstructural measures

infer structure

predict function

Figure 4.5: Selection of Robustly-Connected Region Pairs. Upper le�: Consistency in con-
nectivity 〈C〉s increases as a function of scaled number N̄ and inverse interregional distance 1/d,
with average values 〈C〉s,c indicated in the lower right inset. Horizontal and vertical projections of
〈C〉s are shown in grey as a function of N̄ and 1/d, respectively. Note that variations in N̄ more
tightly constrain 〈C〉s than do variations in 1/d. We impose thresholds N̄T and 1/dT (dashed
lines) to select two largely overlapping subsets of region pairs with high 〈C〉s, whereby regions
linked by high rescaled numbers N̄ (lower le�) and within small interregional distances (upper
right) are consistently present across a large number of subjects. Regions selected via N̄T are used
to predict FC from SC, and regions selected via 1/dT are used to infer SC from FC (lower right).
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4.3.1 Structural versus Functional Brain Networks

�e construction of brain networks relies on the appropriate choice of brain regions

to be used as network nodes, between which connectivity measures are then assessed.

�e Automated Anatomical Labeling (AAL) Atlas [92] describes a parcellation scheme

in which regions are de�ned based on known anatomical boundaries. �e 90 regions

in this atlas consist of both cortical and subcortical structures, but they do not include

the brainstem. Because they are derived from anatomical boundaries, the regions in this

atlas vary signi�cantly in size. As this variation has been shown to impact connectivity

estimates, we choose to use an upsampled version of this atlas consisting of 600 regions

that are similar in volume while remaining anatomically constrained. From this set of

regions, we compute structural and functional networks for 84 individual subjects.

Structural brain networks are obtained from DTI measurements via a tractography

algorithm used to identify white matter tracts linking brain regions. For each subject, we

compute two measures of structural connectivity (SC): the total number N and average

length L of tracts linking two regions. Qualitatively similar results were obtained by

rescaling N → N/L, a method that was previously suggested to account for bias in the

tractography algorithm [43], and we therefore report results using the direct measure

N . We additionally de�ne a binary number C that speci�es the presence or absence of

SC between two regions, such that Ci,j = 1 if regions i and j are linked by one or more

white matter tract, and Ci,j = 0 otherwise.

Functional brain networks are obtained from fMRI measurements of BOLD time
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series. Pearson’s correlations are computed between scale 2 wavelet coe�cients of voxel-

averaged time series measured within two regions. For each subject, we compute three

measures of functional connectivity (FC): the correlation between two time series mea-

sured at rest (resting state), during the performance of an attention task (attention state),

and during the performance of a memory task (memory state). Given that task-driven

changes in FC are small relative to resting-state values [93], we compare the strength of

FC measured at rest (rsFC) to that measured in deviations ∆asFC = asFC− rsFC of

the attention state (asFC) from rest and in deviations ∆msFC = msFC− rsFC of the

memory state (msFC) from rest.

In the following analysis, we identify structural properties that are predictive of

function (SC→ FC) and functional properties that are indicative of structure (FC→

SC), assessing these relationships on both a representative and a subject-speci�c level.

Notation: In comparing di�erent quantities, we compute the average 〈O〉 and stan-

dard deviation σ(O) of a given quantityO. When computed across subjects, we reference

the quantity with the subscript s (e.g. 〈O〉s), and when computed across connections

within a single subject, we reference the quantity with the subscript c (e.g. 〈O〉c).

4.3.2 Selecting Robustly-Connected Region Pairs

�e brain exhibits both sparse and variable connectivity, with far fewer anatomical

connections than would be expected at random [47] and with patterns of connectivity that

vary between individuals [82]. By isolating regions that are consistently connected across
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many subjects, we can reliably compare representative and subject-speci�c relationships

in SC and FC.

Of the possible 179700 pairings between 600 regions, less than 2% are structurally

connected within a given subject. Even fewer region pairs are consistently connected

across subjects, a discrepancy that may be mitigated by the use of Freesurfer surface-based

region parcellations. To robustly relate SC and FC across subjects, we isolate region pairs

that consistently show nonzero SC. �e selection of region pairs need not be the same for

the analyses of SC→ FC and FC→ SC so long as the former does not use information

about FC and the latter does not use information about SC.

As a measure of inter-subject consistency in SC, we compute the fraction of subjects

〈C〉s that show nonzero SC between a given region pair. We �nd that this consistency

increases with both the normalized number of tracts N̄ = 〈N〉s/σs(N) (a purely struc-

tural measure) and the inverse interregional distance 1/d (a purely metric measure that

has been linked to single-subject SC [89]). We therefore impose the thresholds N̄T = 0.6

and 1/dT = 0.1 to select two largely overlapping subsets of region pairs for the separate

analyses of SC→ FC and FC→ SC (upper le� of Figure 4.5). Both subsets are similar

in size (3085 versus 3079 region pairs, respectively) and average consistency 〈C〉s,c (86%

versus 79%, respectively). Furthermore, because N̄ and 1/d scale roughly linearly with

one another, it is straightforward to appropriately tune N̄T and 1/dT to achieve a desired

consistency and subset size while maintaining similar results (see Chapter 5 for further

discussion).
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Of the two measures, variations in 1/d less tightly constrain 〈C〉s than do variations

in N̄ (horizontal projections in Figures 4.6 and 4.8 ). d must therefore be restricted

to relatively small values in order to achieve high consistency, thereby disfavoring the

selection of long connections. Even so, a small fraction of the selected region pairs are

not structurally connected within any subject, introducing a small amount of noise into

the analysis of FC→ SC.

Note that qualitatively similar results can be achieved by selecting region pairs via

the direct measure 〈C〉s (see Chapter 5). However, we choose instead to select region

pairs via N̄ and 1/d because this selection avoids two drawbacks of using 〈C〉s directly:

(i) 〈C〉s inherently requires information about SC and is therefore less optimal than 1/d

for the assessment of FC→ SC, and (ii) 〈C〉s lacks a single-subject correlate that would

enable the direct extension of these methods to single-subject brain networks and is

therefore less optimal than N̄ for the assessment of SC→ FC.

4.3.3 Representative and Subject-Speci�c Brain Networks

We construct representative and subject-speci�c brain networks by respectively mea-

suring subject-averaged and subject-speci�c strengths of SC and FC between consistently-

connected region pairs. To assess SC → FC (or analogously FC → SC), we partition

each network into subgroups of connections within similar structural (functional) prop-

erties, and we compare the functional (structural) connectivity within partitioned sub-

groups. We apply the same partitions to both representative and subject-speci�c networks,
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and we con�rm that our analysis is robust to partition choices (see Chapter 5).

To compare the properties of partitioned subgroups of connections, we evaluate shi�s

in the cumulative distribution functions (CDFs) of a given quantity O, where O takes on

representative or subject-speci�c values of SC and FC. �e CDF(O), which measures the

probability of �ndingO > O∗ for every value ofO∗, enables the simultaneous comparison

of di�erent instantiations of the quantity O. In assessing representative networks, we

report the full CDFs of 〈O〉s. In assessing subject-speci�c networks, however, we report

subject-speci�c distribution averages 〈O〉c to enable the comparison of distribution

properties across subjects.

4.4 Predicting Function from Structure

4.4.1 Structural Partitions

Structural resources are unevenly distributed between di�erent regions of the brain

[94]. For example, a signi�cant amount of material is dedicated to myelination in the

corpus callosum. Similarly, certain brain regions are more densely or distantly connected

than other regions [95]. We investigate the extent to which variations in these structural

properties are re�ected in the strength of communication between brain regions.

We �nd that a majority of consistently-connected brain regions are linked by few

numbers of short connections. However, there exist regions that are densely linked by

short connections or sparsely linked by long connections. Here, we use “dense” and
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Figure 4.6: Structural Partitions in the Representative Brain. Number 〈N〉s versus length
〈L〉s of connections between region pairs selected via N̄T . We apply a length threshold LT = 20
and a number threshold NT = 30 (dashed lines) to separate long from short and dense from
sparse connections, and we further distinguish inter-hemispheric connections (outlined markers).
In combination, these partitions separate four non-overlapping subgroups of connections, short
(light green) and long (light blue) inter-hemispheric connections and dense (dark green) and
long (dark blue) intra-hemispheric connections, from the remaining bulk of short, sparse intra-
hemispheric connections (tan). �e average consistency of these connections (superimposed onto
the horizontal projection in the upper le�) increases with N̄T and is largest within the subgroup
of densely-connected regions. Coronal, axial, and sagittal views of structural and functional
subgroups of connections. Grey nodes mark region centers, and lines mark region pairs that are
linked by one or more tract in the representative brain. Note that curvilinear tracts are represented
as straight lines.

124



“sparse” to refer to connections with numbers greater and less than a threshold value

NT , and we use “long” and “short” to refer to connections whose lengths are greater and

less than a threshold value LT . In combination with the delineation between inter- and

intra-hemispheric connections, these partitions de�ne four non-overlapping structural

subgroups, long and short inter-hemispheric connections and long and dense intra-

hemispheric connections, whose properties we compare to those of the remaining bulk

of short, sparse intra-hemispheric connections (Figure 4.6).

Connections within each structural subgroup di�er in their degree of consistency

〈C〉s. Regions that exhibit dense connectivity are consistently connected within nearly

all subjects, regardless of the selection threshold N̄T (horizontal projection in Figure

4.6). �e observed properties of this subgroup are therefore less susceptible to noise

introduced by inconsistent SC. �e remaining subgroups are consistently-connected

within 85% of subjects, but N̄T can be tuned to larger values in order to increase this

consistency and reduce associated noise (see Chapter 5 for further discussion).

4.4.2 Functional Connectivity of the Representative Brain

In the resting state, we �nd striking di�erences in the strength of FC between regions

linked by di�erent types of structural connections (Figure 4.7a,d). All inter-hemispheric

connections, regardless of length, show strong rsFC. �e reduced sensitivity of inter-

hemispheric correlations to variations in tract length may arise due to the insulating

properties of heavy myelination along inter-hemispheric tracts. Dense intra-hemispheric
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Figure 4.7: Functional Connectivity of Structural Subgroups. Functional measures 〈rsFC〉
(top row), 〈∆asFC〉 (middle row), and 〈∆msFC〉 (bottom row) produced by structural subgroups
of connections in representative and subject-speci�c brain networks. (a-c) Density maps of 〈FC〉s
versus 〈N〉s and 〈L〉s in the representative brain, with the partitions used to de�ne structural
subgroups indicated below and to the le� of each sub�gure. (a) In the resting state, we see
signi�cant variation in FC across variations in SC. During task performance, we see overall (b)
suppression during attention and (c) activation during memory, with less variation in FC across
variations in SC. (d-f) CDFs of 〈FC〉s produced by structural subgroups of connections in the
representative brain. (d) In the resting state, inter-hemispheric connections and dense intra-
hemispheric connections show strong FC, while long intra-hemispheric connections show weak
FC. During task performance, long intra-hemispheric connections show larger (e) decreases in
〈FC〉s during attention and (f) increases in 〈FC〉s during memory as compared to the remaining
subgroups of connections. (g-i) Subject-speci�c values of 〈FC〉c produced by structural subgroups
of connections, where subjects are ordered by overall FC such that each vertical cross-section
represents a single subject. (g) In the resting state, all subjects show strong 〈FC〉c between inter-
hemispheric and densely-connected intra-hemispheric regions, and all subjects show weak 〈FC〉c
between distant inter-hemispheric regions. (h-i) During task performance, all subjects show
similar changes in the strength of 〈FC〉c measured within di�erent structural subgroups.
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connections show similarly strong rsFC, a property that may re�ect signal ampli�cation

from high numbers of connections (Figure 4.7e,f). Long intra-hemispheric connections,

however, show notably weak rsFC despite being of similar length and number to the set of

long inter-hemispheric connections. �ese observations extend beyond previous �ndings

of increasing rsFC with decreasing interregional distance [89] to identify structural

mechanisms that support strong rsFC between nearby inter- versus intra-hemispheric

region pairs.

During task performance, we �nd that a majority of brain regions decrease in FC

during attention tasks (Figure 4.7b,e) but increase in FC during memory tasks (Figure

4.7c,f) relative to their behavior at rest. Inter-hemispheric and dense intra-hemispheric

connections, which displayed relatively strong rsFC, show similar changes in both asFC

and msFC to the remaining bulk of connections. Long intra-hemispheric connections,

however, show signi�cant changes in FC between the two tasks, exhibiting stronger

suppression in the attention state (Figure 4.7e) and stronger activation in the memory state

(Figure 4.7f) than the remaining bulk of connections. �e magnitude of these changes,

which distinguishes between attention and memory tasks, is consistent across selection

thresholds and becomes more pronounced when biasing toward long connections (see

Chapter 5).

127



4.4.3 Individual Variability in Functional Connectivity.

�e overall strength of FC varies signi�cantly across subjects. Within subject-speci�c

brain networks, however, we �nd that structural subgroups of connections show qual-

itatively similar shi�s in FC to those observed in the subject-averaged representative

brain network. In the resting state, all subjects exhibit strong correlations between inter-

hemispheric and densely-connected intra-hemispheric regions, and they similarly exhibit

weak correlations between distantly-linked intra-hemispheric regions (Figure 4.7g). In

the attention and memory states, all subjects exhibit similar changes in FC produced

by di�erent structural subgroups (Figure 4.7h-i). Notably, the subgroup of long intra-

hemispheric connections shows higher variability both across subjects (Figure 4.7g-i) and

across connections within a given subject (see Chapter 5) as compared to the remaining

structural subgroups.

4.4.4 Conclusions from SC to FC Analysis

�e strong values of rsFC but consistent changes in asFC and msFC exhibited by inter-

hemispheric and dense intra-hemispheric connections suggest that these connections

support strong resting-state function. In contrast, the weak values of rsFC but large

changes in asFC and msFC exhibited by long intra-hemispheric connections suggest that

these connections support task-dependent changes in attention and memory function.
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Figure 4.8: Functional Partitions in the Representative Brain. Inter-subject varianceσs(rsFC)
decreases for increasing FC strength 〈rsFC〉s between region pairs selected via 1/d. We apply
functional thresholds rsFCT (dashed lines) to separate low (bottom 33% in brown), intermediate
(middle 33% in orange), and high (top 33% in yellow) rsFC, and we further distinguish inter-
hemispheric connections (outlined markers). �e average consistency of these connections
(superimposed onto the vertical projection in the upper le�) increases with 1/dT and is largest
within the strongly correlated subgroup. Coronal, axial, and sagittal views of structural and
functional subgroups of connections. Grey nodes mark region centers, and lines mark region
pairs that are linked by one or more tract in the representative brain. Note that curvilinear tracts
are represented as straight lines.

4.5 Inferring Structure from Function

�e results of the previous section revealed that the structural features of anatomical

connections di�erentially impact functional interactions between brain regions. As a

stronger test of the relationship between SC and FC, we investigate whether the functional

interactions can be used to infer underlying structural properties.

4.5.1 Functional Partitions

Given the pronounced separation in the resting-state properties of structural sub-

groups, we use rsFC to infer underlying SC. We apply �xed thresholds rsFCT to separate
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Figure 4.9: Structural Connectivity of Functional Subgroups. Structural measures 〈N〉 (top
row) and 〈L〉 (bottom row) produced by functional subgroups of connections within representa-
tive and subject-speci�c brain networks, with the properties of inter-hemispheric connections
shown as insets in sub�gures c-f. All lengths are given in mm. (a-b) Density maps of log(〈SC〉s)
versus 〈rsFC〉s and σs(rsFC), with functional partitions indicated below each sub�gure. We
see signi�cant variation in SC across variations in rsFC, with rsFC tending to increase for (a)
increasing 〈N〉s and (b) decreasing 〈L〉s. (c-d) cCDFs of 〈SC〉s produced by structural subgroups
of connections in the representative brain. (c) Increasingly large numbers of both inter- and
intra-hemispheric connections support increasingly strong rsFC, and intra-hemispheric con-
nections are more numerous, on average, than inter-hemispheric connections. (d) Corrected
distributions of 〈L〉s show that increasingly strong correlations are supported by increasingly
short intra-hemispheric connections and increasingly long inter-hemispheric connections. Un-
corrected distributions are shown in the dotted inset (with axis scales indicated by dotted lines
along the main axes), reveal that the inclusion of inconsistent connectivity alters the distribution
of short lengths. (e-f) Subject-speci�c values of 〈SC〉c produced by functional subgroups of con-
nections, where subjects are ordered by overall SC strength such that each vertical cross-section
represents a single subject. (e) Across subjects, strong rsFC is supported by large numbers of
inter- and intra-hemispheric connections. (f) Corrected values of 〈L〉c show that, across subjects,
strong rsFC is consistently supported by short intra-hemispheric connections. Uncorrected values
(dotted inset), reveal that the inclusion of absent connections reverses the relationships between
intra-hemispheric connection length and rsFC strength.
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weak (bottom 33%), intermediate (middle 33%), and strong (top 33%) rsFC, and we

further distinguish inter- from intra-hemispheric interactions (Figure 4.8). In agree-

ment with the results of the previous section, we �nd that nearly two-thirds of all inter-

hemispheric interactions fall into the strongly-correlated subgroup.

We �nd that the functional properties of strongly-correlated regions are less variable

across subjects, showing low inter-subject variance σs(rsFC) (Figure 4.8). Strongly-

correlated region pairs also tend to be structurally connected across a larger percentage

of subjects (vertical projection in Figure 4.8). Together, these �ndings suggest that strong

rsFC is supported by consistency in both structural and functional connectivity.

4.5.2 Structural Connectivity of the Representative Brain

Consistent with the results found in the previous section, we �nd striking di�erences

in the structural properties of connections that support strong versus weak correlations

(Figure 4.9a,b). Both inter- and intra-hemispheric regions that show increasingly strong

rsFC are linked by an increasingly high number of connections (Figure 4.9c). As previ-

ously observed, intra-hemispheric regions are more densely connected and tend to be

linked by shorter connections, on average, than inter-hemispheric regions.

Inspection of the distribution of connection lengths reveals that increasingly long

inter-hemispheric connections consistently support increasingly strong rsFC (insets of

Figure 4.9d). �e separation in the average length of connections linking strongly- versus

weakly-correlated regions is small and can change across variations in the selection and
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partitioning of region pairs (see Chapter 5). �is suggests, in agreement with the results

of the previous section, that the strength of inter-hemispheric rsFC is less sensitive to

variations in connection length.

While increasingly long intra-hemispheric connections appear to support increasingly

strong rsFC over short distances (dotted inset of Figure 4.9d), this relationship is an

artifact of averaging over inconsistently-connected region pairs. Inconsistent connectivity

can produce apparent connection lengths 〈L〉s that are shorter than the interregional

distance d between the interconnected regions. Removing this artifact (a process that

requires knowledge of SC) reveals that strong rsFC is consistently supported by short

intra-hemispheric connections (main portion of Figure 4.9d). �is artifact does not

qualitatively impact the previously-discussed relationships between SC and FC observed

in Figures 4.7 and 4.9 (see Chapter 5 for further discussion).

4.5.3 Individual Variability in Structural Connectivity

Just as the overall strength of FC varied across subjects, we �nd signi�cant inter-subject

variation in the overall number and length of connections. Within subject-speci�c brain

networks, however, strong and weak correlations are supported by connections with

similar structural properties to those observed in the subject-averaged representative

brain network.

Individual subjects show strikingly consistent separation in the number of intra-

and inter-hemispheric connections that link strongly- versus weakly-correlated regions,
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with higher numbers of connections consistently supporting stronger rsFC. �e ob-

served length of these connections, however, is sensitive to the presence of inconsistent

connectivity, as was observed in the representative brain network.

In the absence of accounting for inconsistent connectivity, strong intra-hemispheric

correlations appear to be supported by long connections (dotted inset of Figure 4.9f). If

we remove absent connections from subject-speci�c brain networks (a process analogous

to that used in the representative brain network to remove unphysical lengths), we

recover the relationship that strong correlations are consistently supported by short intra-

hemispheric connections (main portion of Figure 4.9f). In both cases, inter-hemispheric

regions show varied separation in the length of connections that support strong versus

weak correlations (insets in Figure 4.9f).

4.5.4 Conclusions from FC to SC Analysis

�e consistent link between connection number and rsFC strength suggests that high

connection number is a broadly conserved property for supporting strong FC. In compar-

ison, the observed variation between inter- versus intra-hemispheric connection length

and rsFC strength suggests that connection length is not a broadly conserved property

but rather di�erentially relates to the anatomical properties of both the connections and

the speci�c regions linked by these connections.
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4.6 Methodological Considerations

While the analyses of FC→ SC and SC→ FC produce consistent and complimen-

tary results, the inference of SC from FC is the more di�cult of the two analyses. �e

di�culty arises in selecting, without the knowledge of SC, region pairs that show consis-

tent SC across subjects. �e noise introduced by selecting region pairs with inconsistent

SC can be partially, but not completely, eliminated by restricting the analysis to small

interregional distances. �e disadvantage, however, is that this approach biases against

the selection of the task-relevant set of long intra-hemispheric connections, making the

inference of SC from task-driven FC more di�cult. Furthermore, the distribution of

connection lengths inferred from this approach is sensitive to artifacts that arise from

averaging over inconsistently-connected region pairs. Robust relationships between con-

nection length and rsFC strength can be achieved by removing from the representative

brain network connections whose average length 〈L〉s is less than the minimum possible

length d− dmin, or analogously by removing absent connections from subject-speci�c

brain networks.

�e application of indirect or higher-order connectivity measures, such as modularity,

clustering, and path length, to the present analysis may help bridge the �ndings of

previous studies that have separately assessed structural [43, 47] and functional [96,

97, 46] human brain networks (see [98] for a comprehensive review). Together, these

approaches may inform and constrain the connectivity used in computational models of

network dynamics.
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In concluding, we can speculate as to why the brain might be structured in this

manner, with many short and few long connections that di�erentially impact resting

versus task-driven activity. Connections are energetically expensive to both maintain

and use [99, 100, 101, 102], favoring short and sparse over long and dense connectivity.

However, few long connections more e�ciently transmit information between distant

regions than do many short connections, supporting the role of long connections in

task-directed activity. Conversely, dense connectivity may enhance the robust properties

of default mode function by reducing the potential impact of local structural disruptions,

supporting the role of high numbers of connections in strong resting-state activity.

Together, these �ndings provide insight into the principles that may have constrained

the evolution and development of the anatomical architecture of the human brain, and

they make speci�c predictions about the functional implications of degradations to this

architecture. Identifying such links between anatomical and functional connectivity

patterns is crucial for understanding both the capabilities and constraints on human

cognitive function.

4.7 Discussion

Identifying relationships between structural and functional human brain networks

is crucial for understanding the large-scale organization of the human brain. Previous

studies of structure-function relationships have been limited to speci�c brain regions,

small sample sizes, and resting-state activity [43, 89, 88] for which is it di�cult to assess
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widespread structure-function interactions. In the present study, we introduce novel

methods for both predicting and inferring consistent relationships between structural

and functional connectivity across subjects and cognitive states.

�e complimentary analyses of FC→ SC and SC→ FC identify conserved struc-

tural properties that support strong resting-state function. We �nd that high numbers of

connections consistently underlie strong rsFC, a result that supports both empirical and

computational studies of resting-state activity [89, 103]. �e lengths of these connections

are di�erentially important for distinguishing inter- from intra-hemispheric function,

with local intra-hemispheric and nonlocal inter-hemispheric connections consistently

supporting strong rsFC.

Analysis of SC → FC further identi�ed structural properties that support task-

dependent changes in function. Long-range intra-hemispheric connections, which link

brain regions important for attention [104, 105, 106, 107] and memory [108, 109, 110]

(see Chapter 5), are found to both support and distinguish between attention and memory

tasks. �e observed variability in task-driven FC, a property that has been linked to

behavioral measures [111], suggests that the strength of connectivity between distant

intra-hemispheric regions may be predictive of attention and memory performance.

�e �nding that state-dependent shi�s in FC re�ect known properties of both anatom-

ical connections and the regions linked via these connections provides support for the

utility of correlations in BOLD signals as a measure of functional interaction between

brain regions. Recent results have indicated that �ber pathways can exhibit abrupt turns
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that would not be identi�ed by the tractography algorithm used here [95]. �e inclusion

of such pathways in the analysis could strengthen the observed relationship between

structural and functional connectivity. �e observation of structurally-mediated FC,

however, does not discount previous �ndings that functional correlations can persist in

the absence of SC, as is observed in persons with agenesis of the corpus callosum [112],

and may be mediated by indirect SC [89].

Changes in both resting and task-driven FC have been linked to development [113,

114], aging [115, 116], and neurological disease [117, 118]. �e results presented here

provide insight into the structural mechanisms that could contribute to such altered

functional states. Disruptions to dense connections could alter the topological nodal

properties of network hubs, a consequence that has been linked to altered rsFC in diseases

such as epilepsy [119]. Disruptions to inter-hemispheric connections could similarly

reduce rsFC, as is observed in patients with axonal injury in the corpus callosum [120]. As

changes in FC have additionally been linked to variability in task performance [121, 111],

structural disruptions are expected to alter behavior across a range of cognitive tasks.

While the analyses of FC→ SC and SC→ FC produce consistent and complimen-

tary results, the inference of SC from FC is the more di�cult of the two analyses. �e

di�culty arises in selecting, without the knowledge of SC, region pairs that show consis-

tent SC across subjects. �e noise introduced by selecting region pairs with inconsistent

SC can be partially, but not completely, eliminated by restricting the analysis to small

interregional distances. One disadvantage, however, is that this approach biases against
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the selection of the task-relevant set of long intra-hemispheric connections, making the

inference of SC from task-driven FC more di�cult. Furthermore, the distribution of

connection lengths inferred from this approach is sensitive to artifacts that arise from

averaging over inconsistently-connected region pairs. Robust relationships between con-

nection length and rsFC strength can be achieved by removing inconsistent connections

from the representative brain network, or analogously by removing absent connections

from subject-speci�c brain networks.

�e application of indirect or higher-order connectivity measures, such as modularity,

clustering, and path length, to the present analysis may help bridge the �ndings of

previous studies that have separately assessed structural [43, 47] and functional [96,

97, 46] human brain networks (see [98] for a comprehensive review). Together, these

approaches may inform and constrain the connectivity used in computational models of

network dynamics.

In concluding, we can speculate as to why the brain might be structured in this

manner, with many short and few long connections that di�erentially impact resting

versus task-driven activity. Connections are energetically expensive to both maintain

and use [99, 100, 101, 102], favoring short and sparse over long and dense connectivity.

However, few long connections might more e�ciently transmit information between

distant regions, as is needed during task performance, than do many short connections.

Conversely, dense connectivity could enhance the robust properties of default mode

function by reducing the potential impact of local structural disruptions. Finally, an
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insensitivity of resting-state correlations to variations in connection length may be crucial

for functionally binding the two hemispheres which, although structurally segregated,

must support a single cognitive identity.

Together, these �ndings provide insight into the principles that may have constrained

the evolution and development of the anatomical architecture of the human brain, and

they make speci�c predictions about the functional implications of degradations to this

architecture. Identifying such links between anatomical and functional connectivity

patterns is crucial for understanding both the capabilities and constraints on human

cognitive function.
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Chapter 5

Impact of Network Construction on

Brain Connectivity

“�ere are billions of neurons in our brains, but what are neurons?

Just cells. �e brain has no knowledge until connections are made between

neurons. All that we know, all that we are, comes from the way our neurons

are connected.”

–Tim Berners-Lee, from from Weaving �e Web: �e Original Design and Ultimate

Destiny of the World Wide Web by its Inventor, 1999

5.1 Introduction

�e following chapter provides a detailed analysis of relationships between structural

and functional connectivity in the human brain across variations in the techniques used
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to assess these relationships. In the previous chapter, we used structural and nonstructural

measures to identify pairs of brain regions that were consistently structurally connected

within a large percentage of subjects. Within the subset of regions selected via these

measures, we constructed subject-averaged (“representative”) and subject-speci�c brain

networks from measures of structural and functional connectivity. We examined the

extent to which functional connectivity could be predicted from structural connectivity,

and to what extent structural connectivity could be inferred from functional connectivity.

Subgroups of connections partitioned based on structural and functional measures

(Figures 4.6 and 4.8) were shown to di�er in their strength of functional and structural

connectivity (Figures 4.7 and 4.9). Here, we highlight the speci�c anatomical regions of

the brain involved in these structural and functional interactions. We then show that

the observed relationships between structural and functional connectivity are robust to

the speci�c choices made in selecting and partitioning subgroups of connections. By

comparing two memory tasks, one for faces (assessed in 4) and one for words (assessed

in this chapter), we con�rm that the observed properties of memory-state functional

connectivity are consistent across di�erent memory conditions. Finally, we discuss the

sensitivity of these results to inconsistent structural connectivity within representative

and subject-speci�c brain networks.
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5.2 Review of Methodology

In the previous chapter, we assessed the strength of structural and functional connec-

tivity (SC and FC, respectively) between the 600 brain regions within the uniform-600

atlas. �e strength of SC between regions was de�ned by the average length and total num-

ber of white matter tracts. �e strength of FC was de�ned by the strength of BOLD corre-

lations and was separately assessed at rest (rsFC), in deviations ∆asFC = asFC− rsFC

of the attention state (asFC) from rest, and in deviations ∆msFC = msFC− rsFC of

the memory state (msFC) from rest. �e memory state was de�ned in the text to be

strength of deviations ∆msFC measured during the faces memory task, although we

later compare within this supplement the strength of ∆msFC measured during the faces

memory task versus the words memory task.

By relating these structural and functional connectivity measures, we examined the

extent to which (i) functional connectivity could be predicted from structural connectivity

(SC → FC) and (ii) structural connectivity could in turn be inferred from functional

connectivity (FC→ SC). We assessed these relationships within subject-averaged, or

“representative”, brain networks, for which the average strength of connectivity 〈Oij〉s

between regions i and j is given by:

〈Oij〉s =
1

Ns

Ns∑
s=1

Os
ij, (5.1)

where Ns = 84 is the number of subjects and O takes on values of SC or FC. �e

construction of representative brain networks from subject-averaged measures of SC and
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FC is advantageous for identifying structure-function relationships that are common

to many subjects. We then compared representative structure-function relationships

to those observed within subject-speci�c brain networks. In comparing connectivity

measures across subjects, we computed subject-speci�c connectivity strengths 〈O〉c as

averages across connections within a single subject:

〈O〉c =
1

Nc

Nc∑
i,j

Oij, (5.2)

where Nc gives the number of region pairs used in the analysis, with Nc = 3079 for

the analysis of SC→ FC, and Nc = 3079 for the analysis of FC→ SC.

�e regions pairs selected for each analysis were chosen based on their likelihood

of being consistently structurally connected across a large percentage of subjects. To

measure this consistency, we de�ned the subject-speci�c binary quantity C , such that

Cij = 1 if regions i and j are connected by one or more white matter tract within a single

subject, and Cij = 0 otherwise. We de�ned the consistency of connectivity to be the

subject-averaged quantity 〈Cij〉s, which speci�es the fraction of subjects that show one or

more white matter tract linking regions i and j (e.g. a value of 〈Cij〉s = .75 indicates that

regions i and j are linked by one or more structural connection within 75% of subjects).

Because the consistency 〈Cij〉s does not have an analogously continuous subject-

speci�c correlate (but rather has only the binary correlate C), and because the compu-

tation of 〈Cij〉s inherently requires the use of structural information, we identi�ed two

additional measures that relate to this consistency. Importantly, these measures (one
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structural and one nonstructural) can be de�ned as subject-averaged or subject-speci�c

quantities, enabling the comparison between representative and subject-speci�c brain

networks. Furthermore, the use of a structural measure to select regions for the prediction

of function does not make any a priori assumptions of functional information, nor does

the use of a nonstructural measure to select regions for the inference of structure make

any a priori assumptions of structural information. �ese measures are de�ned as follows:

�e rescaled number of connections N̄ij between regions i and j, given by:

N̄ij =
〈Nij〉s
σs(Nij)

, (5.3)

is a purely structural measure that assesses the reliability in connection number

across subjects. �e denominator of this quantity gives the standard deviation in number

σs(Nij) computed across subjects:

σs(Nij) =

√√√√ 1

Ns

Ns∑
s

(
N s
ij − 〈Nij〉s

)2
. (5.4)

We additionally specify the purely nonstructural measure of inverse interregional

distance 1/dij , de�ned by the metric distance dij between the center of mass positions

(x, y, z) of regions i and j:

1

dij
=

1√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

(5.5)

In the previous chapter, we showed that increasing values of both N̄ and 1/d relate to

increasing values of the consistency 〈C〉s. We therefore say that N̄ and 1/d are indirect
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measures of consistency, while 〈C〉s is, by our de�nition, the direct measure of consis-

tency. �e dependence of 〈C〉s on N̄ and 1/d enables us to isolate region pairs that are

consistently structurally-connected (high values of 〈C〉s) by selecting region pairs above

the threshold values N̄T = 0.6 and 1/dT = 0.1. From the set of region pairs selected

via N̄T and 1/dT , we constructed two representative brain networks for the separate

assessment of (i) SC→ FC and (ii) FC→ SC.

In (i), we imposed a length threshold LT = 20 to separate short (L ≤ LT ) from long

(L > LT ) connections, and we imposed a number threshold NT = 30 to separate dense

(N > NT ) from sparse (N ≤ NT ) connections. Note that our use of the terms “dense”

and “sparse” to refer to high and low connection numbers di�ers from de�nitions of

density in which the number of tracts is scaled by the total cross sectional tract area. In

combination with the separate consideration of inter- and intra-hemispheric connections,

these partitions in length and number de�ne four non-overlapping structural subgroups:

short and long inter-hemispheric connections, and short but dense and long but sparse

intra-hemispheric connections, whose functional properties we compared to the remain-

ing bulk of short, sparse intra-hemispheric connections. In Figure 4.7, we showed that

these structural subgroups were predictive of shi�s in the strength of rsFC, ∆asFC, and

∆msFC observed within representative and subject-speci�c brain networks.

As the resting state was shown to exhibit the most pronounced separation in the

functional properties of structural subgroups, we used resting state FC, rather than task-

driven FC, to infer underlying structural properties in (ii). We imposed two functional
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thresholds rmFCT to partition region pairs into three equal-sized functional subgroups

that show weak (bottom 33%), intermediate (mid 33%), and strong (top 33%) rsFC. We

showed that these functional subgroups were supported by structural connections that

di�ered in both length and number.

In what follows, we address four speci�c points of this analysis. (1) We identify

the anatomical regions that participate in the structural subgroups whose regions were

selected via N̄T and partitioned viaLT andNT , and similarly those regions that participate

in the functional subgroups whose regions were selected via 1/dT and partitioned via

rsFCT. (2) We show that our results are robust to variations in the selection of regions

via N̄T and 1/dT (versus the selection via thresholds 〈C〉T in the direct consistency 〈C〉s)

and to variations in the structural and function partitions imposed byLT ,NT , and rsFCT.

(3) We compare the results of using memory-state connectivity msFC measured from

the faces memory task versus the words memory task. (4) We discuss the extent to which

variability in the consistency of structural connectivity, introduced by the selection of

region pairs via N̄ and 1/d, impacts the results of the previous chapter.

5.3 Robustness to �resholding

In selecting and partitioning groups of region pairs for the construction of brain

networks, we made speci�c choices about both the number of retained region pairs and

the divisions used to group connections between these region pairs. In what follows, we

evaluate the structural and functional connectivity of the representative brain networks
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across variations in the thresholds used to construct (N̄T and 1/dT ) and partition (LT ,

NT , and rsFCT) these networks. We assess this robustness to thresholding within our

two analyses, SC → FC and FC → SC, and we show that the correlations between

structure and function observed in each analysis are robust to thresholding.

5.3.1 Predicting Function from Structure

�e analysis of SC→ FC shown in the previous chapter was performed on a repre-

sentative brain network constructed from region pairs linked by high rescaled numbers

of structural connections (N̄ > N̄T ). Connections between these region pairs were parti-

tioned based on their length and number via the structural thresholdsNT andLT . In com-

bination with the delineation between inter- and intra-hemispheric connectivity, these

partitions de�ned four structural subgroups, (1) short and (2) long inter-hemispheric

connections, and (3) dense and (4) long intra-hemispheric connections, whose properties

were compared to the remaining bulk of short, sparse intra-hemispheric connections.

�e subject-averaged strengths 〈rsFC〉s, 〈∆asFC〉s, and 〈∆msFC〉s were then compared

across these partitioned subgroups.

We now evaluate the robustness of structurally-dependent shi�s in 〈rsFC〉s, 〈∆asFC〉s,

and 〈∆msFC〉s to variations in N̄T , LT , and NT . As a measure of comparison across

thresholds, we compute the averages 〈rsFC〉s,c, 〈∆asFC〉s,c, and 〈∆msFC〉s,c of the com-

plementary cumulative distribution functions (cCDFs) produced by connections within

the representative brain network. �ese cCDFs were shown in Figure 4.7d-f for the
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Figure 5.1: Predicting FC from SC: Robustness to �resholding. Changes in average func-
tional connectivity 〈rsFC〉s,c, 〈∆asFC〉s,c, and 〈∆msFC〉s,c produced by structural subgroups
of connections across variations in the selection of regions via (a-c) N̄T and (d-f) 〈C〉T and across
variations in the (g-i) structural thresholds LT and NT . �resholds are scaled by their maximum
values, with the values used in the previous chapter indicated by dashed lines. Variations in
the selection of region pairs via the indirect (N̄T ) and direct (〈C〉T ) measures of consistency
produce similar shi�s in 〈FC〉s,c that collectively increase with increasing threshold values. In
comparison, variations in structural thresholds alter the separation in 〈FC〉s,c across structural
subgroups. Structural subgroups show the most pronounced separation in 〈FC〉s,c in the resting
state, with inter-hemispheric and dense intra-hemispheric connections producing consistently
strong 〈rsFC〉s,c and long intra-hemispheric connections producing consistently weak 〈rsFC〉s,c
(top row). During task performance, inter-hemispheric and dense intra-hemispheric connections
produce similar changes in 〈FC〉s,c to the bulk of remaining connections, while long intra-
hemispheric connections producing consistently weak changes in 〈asFC〉s,c (middle row) and
strong changes in 〈msFC〉s,c (bottom row).
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threshold values N̄T = 0.6, NT = 30, and LT = 20. �e notation 〈O〉s,c indicates

that the average of the quantity O was computed �rst across subjects, in constructing

the representative brain network, and then across connections within the representative

network. Variations in 〈O〉s,c measure relative shi�s in the average values of the cCDFs

across variations in thresholding.

We �nd that the observed shi�s in FC shown in Figure 4.7d-f in Chapter 4 are robust

to variations in thresholding, as shown here in Figure 5.1 and as discussed in detail

below. Across all threshold values, inter-hemispheric FC shows minimal dependence on

connection length, with both short and long inter-hemispheric connections supporting

strong rsFC and similar changes in asFC and msFC to the remaining bulk of connections.

Dense intra-hemispheric connections show nearly consistent FC strength across thresh-

olding scenarios, exhibiting notably strong rsFC. Long intra-hemispheric connections

consistently show task-dependent changes in FC, exhibiting low values of rsFC, decreases

in asFC from rest, and increases in msFC from rest.

Variations in Selection �resholds. Increasing the selection threshold N̄T corresponds

to retaining fewer region pairs that are more densely connected across subjects (le� col-

umn of Figure 5.1). As mentioned in Section 5.2, N̄ is an indirect measure of the consis-

tency in connectivity 〈C〉s, and therefore the densely-connected region pairs selected via

N̄T also tend to be consistently connected within a large fraction of subjects. �e selection

of region pairs via N̄ , rather than via 〈C〉s, is advantageous because N̄ = 〈N〉s/σs(N)

has an analogous single-subject correlate given by the number of connections N scaled
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by the uncertainty in the measurement of N . In comparison, the single-subject correlate

of the measure 〈C〉s is the subject-speci�c binary number C , which cannot be used as a

continuous threshold for region pair selection.

To con�rm that region pair selection via N̄T produces similar results to selection via

〈C〉s, we compare shi�s in 〈rsFC〉s,c, 〈∆asFC〉s,c, and 〈∆msFC〉s,c across variations in

N̄T and 〈C〉T , shown respectively in the le� and middle columns of Figure 5.1.

Because N̄ scales with the consistency 〈C〉s, and because the distributions of 〈FC〉s are

insensitive to inconsistent connectivity (to be discussed in Section 5.5), variations across

N̄T and 〈C〉T produce similar results, with the latter producing stronger separations in

FC across structural groups (middle column of Figure 5.1). For both choices of selection

threshold, the overall strength 〈FC〉s,c increases with increasing threshold.

Variations in Structural �resholds. Variations in the structural thresholds LT and

NT alter the partitioning of connections into long (L > LT ) versus short (L ≤ LT ) and

dense (N > NT ) versus sparse (N ≤ NT ) subgroups, which in turn alter the degree of

separation in FC observed across structural subgroups.

Biasing toward higher numbers of connections (by increasing NT ) increases the

strength of 〈FC〉s,c in the resting state but has limited e�ect on task-driven states, produc-

ing a slight increase in 〈∆asFC〉s,c and a slight decrease in 〈∆msFC〉s,c. Biasing toward

longer connections (by increasing LT ) increases the separation in 〈FC〉s,c between short

and long inter- and intra-hemispheric connections. �e separation in inter-hemispheric

〈FC〉s,c, however, is consistently smaller than the separation in intra-hemispheric 〈FC〉s,c.
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Most notably, biasing toward longer connections reveals that long intra-hemispheric

connections show increasingly weak 〈FC〉s,c in the resting and attention states and in-

creasingly strong 〈FC〉s,c in the memory state, thereby con�rming that the task-dependent

shi�s observed in Figure 4.7d-f are not artifacts of thresholding.

5.3.2 Inferring Structure from Function

�e analysis of FC → SC shown in Chapter 4 was performed on a representa-

tive brain network constructed from region pairs within close interregional distances

(1/d > 1/dT ). Region pairs were partitioned based on their their strength of rsFC

via the functional thresholds rsFCT into three functional groups exhibiting (1) weak

(bottom 33%), (2) intermediate (middle 33%), and (3) strong (top 33%) rsFC. �ese

subgroups were further delineated into inter- and intra-hemispheric functional groups.

�e subject-averaged structural properties 〈L〉s and 〈N〉s were then compared across

these partitioned subgroups.

We now evaluate the robustness of functionally-dependent shi�s in 〈L〉s and 〈N〉s

to variations in 1/dT and rsFCT. As a measure of comparison across thresholds, we

compute the averages 〈L〉s,c and 〈N〉s,c of the cCDFs produced by connections within the

representative brain network. �ese cCDFs were shown in Figure 4.9c-d for the threshold

values 1/dT = 0.1and rsFCT = 1/3.

We �nd that the observed shi�s in SC shown in Figure 4.9c-d are robust to variations

in thresholding, as shown here in Figure 5.2 and as discussed in detail below. Across all
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Figure 5.2: Inferring SC from FC: Robustness to �resholding Changes in average structural
measures 〈N〉s,c and 〈L〉s,c produced by functional subgroups of connections across variations in
the selection of regions via (a-c) 1/dT and (d-f) 〈C〉T and across variations in the (g-i) functional
thresholds rsFCT, with inter-hemispheric values shown in insets. �resholds are scaled by their
maximum values, and the speci�c values used in the previous chapter are indicated by dashed
lines. Corrected length distributions are shown in the lower row, with uncorrected distributions
shown in dotted insets. Variations in the selection of regions pairs via the indirect (1/dT ) and
direct (〈C〉T ) measures of consistency produce similar shi�s in 〈SC〉s,c, with the overall values
of 〈N〉s,c and 〈L〉s,c tending to respectively increase and decrease with increasing threshold
values. In comparison, variations in the functional thresholds alter the separation in 〈N〉s,c and
〈L〉s,c across functional subgroups. All threshold variations maintain the �nding that strong
rsFC is supported by high numbers of connections and short intra-hemispheric connection
lengths. Inspection of uncorrected 〈L〉s,c reveals that the relationship between increasingly short
intra-hemispheric connections and increasingly strong rsFC can be recovered if (b) unphysical
connection lengths selected via 1/dT are separately removed, if (d) regions are selected via 〈C〉T ,
or if (f) the functional thresholds rsFCT are tuned to select very strongly- and very weakly-
correlated region pairs.
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threshold variations, high numbers of inter- and intra-hemispheric connections consis-

tently support strong rsFC. In assessing the distributions of connection lengths, which

are shown in a later section to be sensitive to the presence of connections with unphysical

connection lengths, we separately consider the uncorrected (dotted insets) and corrected

(main �gure) distributions for which connections with unphysical lengths are respectively

included or excluded. �e corrected distributions show that short intra-hemispheric

connection lengths consistently support strong rsFC. A thorough discussion of the iden-

ti�cation and implications of unphysical connections is presented in Section 5.5.

Variations in Selection �resholds. Increasing the selection threshold 1/dT corre-

sponds to retaining region pairs that are closer in physical proximity (le� column of

Figure 5.2). As mentioned previously, 1/d is an indirect measure of the consistency in

connectivity 〈C〉s, and therefore region pairs in close physical proximity also tend to be

consistently connected within a large fraction of subjects. �e selection of region pairs

via 1/d, rather than via 〈C〉s, is advantageous because 1/d does not rely on knowledge of

anatomical connectivity and therefore does not su�er from the circular use of structural

information for the inference of structural information. In comparison, the measure

〈C〉s relies on the knowledge of structural connectivity between region pairs.

To con�rm that region pair selection via 1/dT produces similar results to region

pair selection via 〈C〉s, we compare shi�s in 〈N〉s,c and 〈L〉s,c produced by functional

subgroups across variations in both 1/dT and 〈C〉T , shown respectively in the le� and

middle columns of Figure 5.2.
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Connection Numbers. Because 1/d scales with the consistency 〈C〉s, and because the

distribution of 〈N〉s is insensitive to inconsistent connectivity (discussed in the following

section), variations across 1/dT and 〈C〉T produce similar distributions of connection

numbers, with the latter producing a more pronounced separation in the large number

of inter- and intra-hemispheric connections that support strong versus weak correlations

(middle column of Figure 5.1). Increases in both threshold values result in an overall

increase in connection number.

Connection Lengths. In comparison to the distribution of 〈N〉s, the distribution of

〈L〉s varies depending on whether regions are selected via 1/dT or 〈C〉T , and whether

connections with unphysical lengths are included in or excluded from in the analysis.

When unphysical connections are excluded (Figure 5.2b,d), variations in both 1/dT and

〈C〉T produce consistent results, with increasingly short intra- and inter-hemispheric

connections supporting increasingly strong rsFC. Region selection via 〈C〉T produces a

stronger separation in the length of inter and intra-hemispheric connections that support

strong versus weak rsFC, as was similarly observed in the distributions of connection

numbers. Increases in both threshold values result in an overall decrease in the average

connection length.

When unphysical connections are included, however, variations in 1/dT and 〈C〉T

produce di�erent results (dotted insets in Figure 5.2b,d). Region selection via 1/d shows

that strongly-correlated regions are linked by longer, rather than shorter, intra- and inter-

hemispheric connections. Region selection via 〈C〉s recovers the relationship between
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short intra- and inter-hemispheric connection length and strong rsFC, con�rming that

inconsistency in connectivity (quanti�ed by low values of 〈C〉s) are responsible for the

altered relationship between connection length and rsFC strength.

Regardless of the selection of regions via 1/d versus 〈C〉s, and regardless of whether

unphysical connections are included in or excluded from the analysis, the distributions

of inter-hemispheric connection lengths show much less separation across functional

subgroups than do the distributions of intra-hemispheric connection lengths.

5.3.3 Variations in Functional �resholds

Variations in the functional threshold rsFCT shi� the delineations between region

pairs that exhibit weak, intermediate, and strong rsFC (right column of Figure 5.2). We

vary this threshold such that the strongly- and weakly-correlated groups consist of the

same number of region pairs but can di�er in number from the intermediate group,

such that the strongly- and weakly-correlated groups are highly populated for small

values of rsFCT, while the intermediate group is highly populated for large values of

rsFCT. Variations in functional threshold values alter the observed separation in SC

across functional subgroups.

Connection Numbers. Biasing toward very strong and very weak rsFC by increas-

ing rsFCT in turn increases the separation in the number of connections that support

strong versus weak rsFC, with high numbers of inter- and intra-hemispheric connections

consistently supporting strong rsFC (Figure 5.2e).
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Connection Lengths. �e impact of variations in rsFCT on the distribution of connec-

tion lengths depends on the inclusion versus exclusion of connections with unphysical

lengths (main portion versus dotted inset of Figure 5.2f). When unphysical connections

are excluded from the analysis, variations in rsFCT increase the separation in the length

of connections that support strong versus weak correlations, with short intra-hemispheric

connections consistently supporting strong rsFC. When unphysical connections are in-

cluded in the analysis, however, strong rsFC appears to be supported by longer, rather

than shorter, intra-hemispheric connections across variations in rsFCT. In both cases,

stronger inter-hemispheric correlations are supported by slightly longer, rather than

shorter, connections. �e observed separation in length across functional subgroups,

however, is much less pronounced for inter- versus intra-hemispheric connections.

5.3.4 Considerations for Inter- versus Intra-Hemispheric Connections

Because inter- and intra-hemispheric connections di�er in their structural properties,

their distributions of SC show di�erent sensitivities to variations in threshold values and

to the inclusion versus exclusion of connections with unphysical lengths.

Inter-Hemispheric Connections. Relatively few inter-hemispheric regions are linked

by connections with unphysical lengths (see later sections on ‘Inconsistent Connectivity in

the Representative Brain Network’), and therefore the distributions of inter-hemispheric

number and length are less sensitive to the exclusion of unphysical connections than are

intra-hemispheric distributions. Regardless of whether unphysical connections are in-
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cluded in or excluded from the analysis, inter-hemispheric regions are consistently linked

by fewer connection numbers and greater connection lengths, on average, than intra-

hemispheric regions, a trend that is maintained across variations in all threshold values.

In contrast to consistently large separation in SC observed between intra-hemispheric

functional subgroups, inter-hemispheric subgroups show reduced separation in the struc-

tural properties that support strong versus weak correlations. Furthermore, the relative

contribution from long versus short inter-hemispheric connections is variable across

thresholding scenarios. Together, these results provide additional support for our previ-

ous �nding that the functional interactions between inter-hemispheric regions are less

sensitive to underlying structure than are interactions between intra-hemispheric regions.

Intra-Hemispheric Connections. �e majority of connections with unphysical lengths

link intra-hemispheric regions, and therefore the distributions of intra-hemispheric con-

nection length (but not number; see Section 5.5) are sensitive to the e�ects of connections

with unphysical length. When included in the analysis, these unphysical connections alter

the apparent relationship between connection length and rsFC, such that increasingly

long, rather than short, connections appear to support increasingly strong rsFC. However,

large increases in functional threshold values, which bias toward the very strongest and

very weakest correlations, can be used to recover the trend that short intra-hemispheric

connections support strong rsFC (far right of dotted inset in Figure 5.2f). Importantly,

this technique requires no knowledge of SC. �is trend can additionally be recovered

by selecting regions pairs via the consistency 〈C〉s (dotted inset in Figure 5.2d). �e
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Figure 5.3: Comparison of Representative and Subject-Speci�c FC Between Memory for
Words versus Faces. �e representative brain network shows similar shi�s in memory state func-
tional connectivity (〈∆msFC〉s) between the memory tasks for (a) faces versus (b) words, with
the distribution of 〈∆msFC〉s showing less variance across connections for words versus faces.
For both words and faces, long intra-hemispheric connections showing pronounced shi�s toward
higher values of 〈∆msFC〉s, while inter-hemispheric and dense intra-hemispheric connections
show similar shi�s in 〈∆msFC〉s to the remaining bulk of short, sparse intra-hemispheric connec-
tions. Individual subjects show similar variability in 〈∆msFC〉c across structural subgroups for
(c) faces and (d) words, with the words task showing less variance in 〈∆msFC〉c across subjects
as compared to the faces task.

di�erent results obtained from the direct (via 〈C〉T ) versus indirect (via 1/dT ) selection

of consistently-connected region pairs suggests that increasing the minimum consistency,

rather than the average consistency, is important for the robust inference of structure

from function.
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5.4 Comparison of Memory for Words versus Faces

�e comparison of functional connectivity across structural subgroups of connections,

as assessed in the previous chapter, compared the strength of FC measured in the resting

state, during the performance of the attention task, and during the performance of the

memory task for faces. Subjects also performed a memory task for words that was not

assessed in Chapter 4. Here, we show that the two memory tasks, for words and for

faces, show similar shi�s in the functional connectivity produced by di�erent structural

subgroups of connections. �e details of the two memory tasks are discussed in [122].

Long intra-hemispheric connections were shown in the previous chapter to sup-

port pronounced shi�s in the memory-state functional connectivity (〈∆msFC〉s) of the

representative brain network associated with memory for faces. Here, we �nd that the

representative brain network shows similar shi�s in 〈∆msFC〉s associated with memory

for words, with long intra-hemispheric connections supporting the largest increase in

msFC among structural subgroups. Furthermore, we �nd that memory for words shows

less variation in 〈∆msFC〉s across connections in the representative brain network than

does memory for faces (Figure 5.3a,b). Individual subjects show similar variation in

the functional connectivity of structural subgroups between memory for words versus

faces, with memory for words showing less variation in 〈∆msFC〉c across subjects than

memory for faces (Figure 5.3c,d).

In a manner identical to that described in the previous section, we compare the

functional connectivity of memory for words versus memory for faces across variations
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Figure 5.4: Comparison of FC Robustness to�resholding Between Memory for Words ver-
sus Faces. �e memory state functional connectivity 〈∆msFC〉s,c of the representative brain
network shows similar robustness to region selection via N̄T (le� column), region selection
via 〈C〉T (middle columns) and the structural partitions NT and LT (right column) between
memory for faces (top row) versus memory for words (bottom row), where the trends for the faces
tasks are described in detail in Figure 5.1 above. Across all partitions, long intra-hemispheric
connections consistently show strong 〈∆msFC〉s,c for both words and faces, while inter- and
dense intra-hemispheric connections show similar values of 〈∆msFC〉s,c to one another and
to the remaining bulk of short, sparse intra-hemispheric connections. Interestingly, in biasing
toward long connections, long inter-hemispheric connections decrease in 〈∆msFC〉s,c in the
faces task but increase in 〈∆msFC〉s,c in the memory task, suggesting that these connections
may be important for distinguishing between di�erent types of memory tasks.
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in the selection and partitioning of region pairs in the representative brain network.

Across variations in the selection thresholds N̄T and 〈C〉T , we �nd that memory for

words shows similar qualitative shi�s in 〈∆msFC〉s,c to those exhibited by memory for

faces. Across variations in both selection thresholds, long intra-hemispheric connections

consistently support large changes in 〈∆msFC〉s,c in both memory tasks (le� and middle

columns of Figure 5.4). �ese relationships are similarly maintained across variations in

the structural thresholds NT and LT (right column of Figure 5.4). However, in biasing

toward long connections, we �nd that very long inter-hemispheric connections show a

decrease in 〈∆msFC〉s,c in the memory task for faces but an increase in 〈∆msFC〉s,c in the

memory task for words. �is suggests that both long inter- and long intra-hemispheric

connections are important for supporting strong memory function, and long inter-

hemispheric connections may be particularly important for distinguishing between

di�erent memory tasks.

Together, these results con�rm that the memory state, whether de�ned by a memory

task for words or faces, exhibits structure-function relationships that are distinct from

those observed in the resting and attention states. Furthermore, these results suggest that

long connections both support and distinguish between di�erent types of memory tasks.

5.5 Inconsistent Connectivity in the Representative Brain

�e two representative brain networks used for the separate assessments of SC→ FC

and FC → SC were constructed using two di�erent, but largely overlapping, subsets
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of region pairs. As discussed in Section 5.2, regions were selected via the structural

and nonstructural measures N̄ and 1/d. Both measures relate to but are distinct from

the consistency in connectivity 〈C〉s, where our terminology is de�ned such that “high

consistency” and “inconsistency” respectively refer to large and small values of 〈C〉s. As a

result of employing two di�erent selection methods, the two representative networks vary

in the degree to which regions are consistently connected across subjects, as measured by

the distributions of 〈C〉s across connections within the representative brain networks.

5.5.1 Identifying Inconsistent Connectivity

In the previous section, we compared relationships between SC and FC across varia-

tions in the methods used to select of region pairs, separately considering region pair

selection via indirect (N̄ and 1/d, as used in the previous chapter) versus direct (〈C〉s)

measures of consistency. Figure 5.1 con�rmed that the functional properties of structural

subgroups are robust to the variations in consistency that arise from selecting region

pairs indirectly via N̄T versus directly via 〈C〉T . Figure 5.2 further con�rmed that the

observed relationship between large connection numbers and strong rsFC is robust to

similar variations in consistency arising from region pair selection via 1/dT versus 〈C〉T .

However, Figure 5.2 showed that the apparent length of these connections varies signif-

icantly depending on region pair selection via 1/dT versus 〈C〉T . Given that 1/d and

〈C〉s are related, the question arises as to why the region pairs selected via each measure

show qualitatively di�erent relationships between 〈L〉s and 〈rsFC〉s.

162



0

70

Representative Network
Partitioned via 1/dT

unphysical
connections L   s < d

1/d

(b)
0

 L
  s

0

1

.5 10

.5

Consistency    C   s

unphysical
connections L   s < d

Representative Network
Partitioned via NT

1 2 3

(d)0

1

.5

cC
D

F 
(  

C
  s )

0
Consistency    C   s

.5 1

inconsistent

consistent

combined

inconsistent

combined

consistent

Intra (Inter)-Hemispheric: 1/d > 1/dT(   , inset ) N > NT (   , inset )(   ) all

 L
  s

cC
D

F 
(  

C
  s )

L   s = d-dmin

(c)

0

70

(a)
.30

L   s = d-dmin

1/d
1 2

Figure 5.5: Inconsistent Connectivity in Representative Brain Networks. (a,c) Average length
〈L〉s versus inverse interregional distance 1/d of connections between regions within the two
representative brain networks assessed in Chapter 4. Regions selected via (a) N̄ and (c) 1/d
are shown respectively in turquoise and maroon, with the minimum length Lmin = d − dmin

superimposed in black. Both methods of region pair selection reduce the number of, but do
not eliminate, connections with unphysical lengths 〈L〉s < Lmin (opaque). �e presence of
unphysical connections is an artifact of averaging over connections that are inconsistently present
across subjects, as evidenced in the shi�ed distributions of 〈C〉s produced by these connections
(b,d). �e removal of these connections shi�s the average consistency toward higher values.
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To address this question, we note that the process of averaging structural properties

across subjects can produce connections that disobey physical constraints. One such

physical constraint requires that the subject-averaged length 〈L〉s of connections linking

two regions not be less than the physical separation d between those regions. A low

value of consistency 〈Cij〉s between two regions i and j, for which a large number of

subjects show no structural connectivity (Cij = 0), can therefore be manifested in an

apparent connection length 〈Lij〉s less than the minimum physical length Lij,min =

dij − dmin, where the subtraction of the minimum interregional distance dmin allows for

the possibility of adjacent regions to be linked via connections with near-zero length. We

refer to connections that exhibit 〈L〉s < Lmin as “unphysical” connections.

We �nd that, within the sets of region pairs used to construct each representative

brain network, a subset of region pairs exhibits this unphysical property arising from

inconsistent connectivity (low values of 〈C〉s). Figure 5.5a-b shows the average length

〈L〉s versus the inverse interregional distance 1/d of connections within the two repre-

sentative brain networks whose region pairs were separately selected via N̄T and 1/dT .

By comparing the lengths 〈L〉s to the minimum physical lengthLmin (black line in Figure

5.5a-b), it can be seen that a fraction of connections within each network have unphysical

lengths 〈L〉s < Lmin. Furthermore, by comparing the distributions of 〈C〉s produced

by connections whose lengths are greater and less than Lmin (Figure 5.5c-d), we can see

that this e�ect arises from inconsistency in connectivity. In both representative brain

networks, connections with unphysical lengths less that Lmin show signi�cantly lower
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inter-subject consistency than do connections with physical lengths greater than Lmin.

Because N̄ is more strongly related to 〈C〉s than is 1/d, the region pairs selected via N̄T

show less separation in the distributions of 〈C〉s than do region pairs selected via 1/dT .

5.5.2 Impact of Inconsistent Connectivity on SC-FC Relationships

To assess the consequences of including unphysical connections in the representative

brain networks, we repeat the analyses of SC→ FC and FC→ SC performed in Chapter

4, now selecting regions subject to the constraints N̄ > N̄T and 〈L〉s > Lmin (for the

analysis of SC→ FC) and 1/d > 1/dT and 〈L〉s > Lmin (for the analysis of FC→ SC).

�e comparisons between this selection method and the selection via N̄T and 1/dT

alone (as was used in the previous chapter) are shown respectively in Figures 5.6 and

5.7. We �nd that, with the exception of the distribution of intra-hemispheric connection

lengths inferred from rsFC (�rst shown in Figure 5.6c-d), all results remain qualitatively

similar with the inclusion versus exclusion of these unphysical connections.

In the assessment of SC→ FC, unphysical connections predominantly occupy the

bulk of short, sparse intra-hemispheric connections (Figure 5.6b). Due to the large

number of region pairs that fall within this structural subgroup, the relative number of

region pairs linked by unphysical connection lengths is small in comparison, and therefore

their inclusion does not signi�cantly alter the observed shi�s in resting-state (Figure

5.6c-d) or task-driven (Figure 5.6e-h) functional connectivity produced by di�erent

structural subgroups of connections.
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Figure 5.6: Consequences of Inconsistent Connectivity on SC → FC. (a) �e presence
of unphysical average connection lengths 〈L〉s < Lmin arises from inconsistently connected
region pairs selected via N̄ . (b) Connections with unphysical lengths are predominantly low in
number and short in length. (c-h) Distributions of average functional measures (c,f) 〈rsFC〉s,
(d,g) 〈∆asFC〉s and (e,h) 〈∆msFC〉s produced by structural subgroups of connections in the
(c-e) presence and (f-h) absence of unphysical connections. As these unphysical connections
predominantly fall into the large group of short, sparse intra-hemispheric connections, their
presence does not qualitatively a�ect the observed shi�s in the functional connectivity produced
by inter-hemispheric, dense intra-hemispheric, and long intra-hemispheric connections.
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connection lengths 〈L〉s < Lmin arising from inconsistently connected region pairs selected
via 1/dT . (b) Unphysical connections predominantly link weakly-correlated intra-hemispheric
regions, and therefore the removal of these connections from the analysis does not qualitatively
alter inter-hemispheric distributions. (c-f) Distribution of average structural measures (c,e)
〈N〉s and (d,f) 〈L〉s that support weak, intermediate, and strong correlations, shown in the (c-d)
presence and (e-f) absence of unphysical connections. Inconsistent connections are (c) low in
number (d) and short in length. Inconsistent connectivity produces a disproportionately high
density of short intra-hemispheric connections (d). �e removal of these regions from the analysis
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In the assessment of FC→ SC, unphysical connections predominantly occupy the

weakly-correlated subgroup, and they show noticeably low connection numbers and

lengths (Figure 5.7). �e presence of unphysical connections increases the observed

separation in connection number across functional subgroups by biasing the weakly-

correlated subgroup toward lower connection numbers. �e exclusion of unphysical

connections from the analysis only slightly decreases, but does not remove, this sepa-

ration. In comparison, the presence of unphysical connections signi�cantly a�ects the

distribution of connection lengths. Inspection of the length distributions shown in Figure

5.7d,f reveals that the inclusion of unphysical connections produces a disproportionately

high density of connections with very short lengths, such that longer local connections

appear to show stronger rsFC. �e exclusion of unphysical connections eliminates the ex-

cess of short connection lengths, thereby altering the distributions such that increasingly

strong intra-hemispheric correlations are consistently supported by increasingly short

connections. As was shown above (Figure 5.2), this �nding is robust to variations in the

thresholds used to both select and partition functional subgroups.

Note that a similar argument can be made to exclude connections with unphysical

average numbers 〈N〉s < 1. �is constraint excludes a smaller subset of connections

that is nearly fully contained within the subset excluded via 〈L〉s < Lmin. �is constraint

therefore reduces, but does not eliminate, the altered distribution of short connection

lengths. All other results remain qualitatively similar with the removal of connections

with unphysical numbers.
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5.5.3 Extension to Subject-Speci�c Networks

Analogous techniques can be applied to single-subject networks, for which the two

possible constraints imposed on representative brain networks (implemented via the

exclusion of connections with 〈L〉s < Lmin or 〈N〉s < 1) reduce to the single constraint

of excluding absent connections within subject-speci�c networks.

Consistent with the analysis of representative brain networks, the removal of absent

connections does not alter the subject-speci�c values of resting-state 〈rsFC〉c, attention-

state 〈∆asFC〉c, or memory-state 〈∆msFC〉c functional connectivity observed across

structural subgroups (Figure 5.8), nor does it alter the subject-speci�c values of inter-

and intra-hemispheric connection number 〈N〉c observed across functional subgroups

(le� column of Figure 5.8). However, as was observed in the representative brain net-

work, the removal of absent connections alters the subject-speci�c values of inter- and

intra-hemispheric connection length 〈L〉c (right column of Figure 5.8 and Figure 4.9f).

Whereas with the inclusion of absent connections, strongly-correlated inter- and intra-

hemispheric regions appear to be linked by longer connections, the removal of absent

connections reveals that increasing intra-hemispheric rsFC is supported by decreasing

connection lengths, while increasing inter-hemispheric rsFC shows minimal variations in

connection length. �ese results con�rm that the properties of representative brain net-

works are consistently observed within subject-speci�c networks for both the inclusion

and exclusion of unphysical connections.
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Figure 5.8: Consequences of Absent Connectivity on Individual Variability in Functional
Connectivity. Absent connections (with L = N = 0) do not a�ect the average resting-state
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170



4 11
0

40

6 10
3

6

9

4 11
0

40

0

20

6 18

5

15

25

5

15

25

6 18

6

20

18

Consequences of Absent Connections on Individual Variability in SC

0

N  c , all

 S
C

  c 
, e

xc
lu

de
d

Number Length

L  c , all

 S
C

  c 
, i

nc
lu

de
d (b)

(d)

3

6

9

(a)

(c)

Figure 5.9: Consequences of Absent Connectivity on Individual Variability in Structural
Connectivity. Absent connections (with L = N = 0) are shown to reduce, across subjects,
the (a) average number 〈N〉c and (b) average length 〈L〉c of both inter- and intra-hemispheric
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moval of absent connections similarly increases 〈L〉c, but it also a�ects the qualitative relationship
between 〈N〉c and rsFC. With the inclusion of absent connections, strongly-correlated intra- and
inter-hemispheric regions appear to be linked by longer connections; however, the removal of
absent connections shows that strongly-correlated intra-hemispheric regions are linked by shorter,
rather than longer, connections, while strongly- and weakly-correlated inter-hemispheric regions
show minimal di�erences in length. �ese results are consistent with those results obtained from
the removal of connections with unphysical lengths in the representative brain.
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5.6 Discussion

Together, this analysis con�rms that the relationships between structural and func-

tional connectivity, detailed in Chapter 4, are consistently observed across variations in

the selection and thresholding of region pairs and across di�erent choices of cognitive

(memory) tasks. However, care must be taken in the selection of region pairs for the

inference of structural from functional properties. �e introduction of inconsistently-

connected region pairs can alter the distributions of apparent connection lengths, an

artifact that can be removed through appropriate thresholding or through the inclusion

of structural information during the region selection process.
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Chapter 6

Structurally-Constrained Relationships

between Functional Brain States

“�e modern geography of the brain has a deliciously antiquated feel

to it–rather like a medieval map with the known world encircled by terra

incognito where monsters roam."

–David Bainbridge, from �e Strange Anatomy of the Brain, New Scientist, 2008

6.1 Introduction

�e brain is inherently dynamic, whether observed at rest or during the performance

of complex tasks. Despite predictions that resting-state neural activity would be noisy and

unconstrained, the human brain has been shown to exhibit correlated patterns of neural

activity, even in the absence of any goal-directed behavior [123]. In particular, a di�use
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set of brain regions has been shown to exhibit consistently strong correlations both across

individuals and across cognitive states [124]. �is default mode network (DMN) is widely

considered to serve as a baseline of large-scale neural activity, from which task-driven

�uctuations above (activations) and below (deactivations) can be assessed.

�e robust features of the default mode are thought to re�ect the underlying func-

tional organization of the brain [125], such that disruptions to this organization may

be indicative of altered functional states [126]. As a result, there is much interest in

describing the structural and functional properties of the DMN. Furthermore, given that

the brain employs the same structural architecture for both default mode and task-driven

function, the question has been raised as to whether the propensity for task-driven ac-

tivity is encoded in the properties of such resting-state functional networks. However,

the extent to which widespread correlations in neural activity are robustly related across

cognitive states is still unclear, as are the structural features that could support such state

relationships.

Recent studies of resting-state neural activity have identi�ed two functional networks,

denoted task-positive (TP) and task-negative (TN) networks, composed of regions known

to activate and deactivate during the performance of attention tasks relative to their

behavior at rest [127]. �e resting-state correlation strength between a subset of these

TP and TN regions has further been shown to predict individual variability in task-

induced correlation strength during a goal-directed attention task [128]. While these

�ndings suggest that TP and TN regions encode both resting-state and task-driven
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function, it is unclear as to whether widespread interactions between these networks

can distinguish between di�erent tasks. Furthermore, the extent to which structural or

functional disruptions could impact these interactions is not presently known.

Motivated by these open questions, we build upon the work presented in Chapters 4

and 5 to quantify the structural features that constrain TP and TN interactions across

resting, attention, and memory states. In comparison to the work presented in the

previous chapters, which assumed no knowledge of the speci�c anatomical regions

involved in structure-function interactions, we now ask whether the inclusion of region-

speci�c information impacts the observed relationships between structure and function

both across individuals and across cognitive states.

We group anatomical brain regions based on their involvement in the TP and TN

networks de�ned in [127]. We show that the numbers of connections that mediate inter-

actions within versus between these task-related networks di�erentially support strong

resting-state and task-directed functional correlations. We further show that a mapping

onto the space of interactions within versus between TP and TN networks can be used to

distinguish between resting, attention, and memory activity. Comparison across subjects

reveals that this space shows striking order, enabling the identi�cation of groups of sub-

jects that exhibit similar state-space relationships. Importantly, we show that subjects

exhibiting improbable state-space properties show abnormal behavioral performance

during both attention and memory tasks. �is suggests that further characterization of

state-space groupings may enable the prediction of task-directed function from resting-
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state activity and may additionally help identify signatures of altered functional states.

6.2 Constructing Brain Networks

Evidence suggests that spontaneous neural activity can be separated into two func-

tional networks, denoted task-positive (TP) and task-negative (TN), based on resting-state

correlations within and anti-correlations between networks [127]. Although de�ned

based on resting-state neural activity, these networks are composed of regions known

to routinely increase and decrease in activation during attention-demanding cognitive

tasks relative to their activity at rest [127].

To assess interactions within and between these networks, we identify regions within

our 600 ROI atlas (introduced in Chapter 4) that overlap wholly or partially with the

TP and TN regions de�ned in [127]. We de�ne the remaining regions as “other" (OTH)

regions. We evaluate structural and functional connectivity between three types of region

pairs composed of (i) two task-positive regions (PP), (ii) two task-negative regions (NN),

and (iii) one task-positive and one task-negative region (PN). �ese interactions can then

be compared to the remaining set of interactions between task-positive, task-negative, and

other regions (PO, NO, and OO; see Figure 6.1 for a schematic of possible interactions).

6.2.1 Structural versus Functional Brain Networks

As described in Chapter 4, structural connectivity (SC) is obtained from DTI measure-

ments via a tractography algorithm used to identify white matter tracts linking ROI pairs.
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Figure 6.1: Interactions within and between Task-Positive and Task-Negative Networks. We
identify regions in our atlas that belong to the task-positive (TP) and task-negative (TN) brain
regions described in [127], and we label all remaining regions as “other” (OTH) regions. �ere
are then six possible types of interactions between these three types of regions. We focus on three
of these interactions: those between two task-negative regions (NN), between two task-positive
regions (PP), and between a task-positive and a task-negative region (PN). �ese connections
are highlighted in the coronal, axial, and sagittal views of the representative brain network. Grey
nodes mark region centers, and lines mark region pairs that are linked by one or more tract in the
representative brain. Note that curvilinear tracts are represented as straight lines.
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We isolate one measure of SC, namely the total number N of white matter tracts linking

two regions. We can then partition N into three groups based on the previously-de�ned

interactions: NPP , NNN , and NPN . We can compare these connection numbers to those

of the remaining interactions, Nbulk = [NPO, NNO, NOO]

Functional connectivity (FC) is obtained from fMRI measurements by computing

Pearson’s correlations between scale 2 wavelet coe�cients of BOLD time series measured

in ROI pairs, where time series are averaged across voxels within each ROI. We de�ne the

strength of FC to be the correlation between two ROI time series, where FC is measured

at rest (rsFC), in deviations ∆asFC = asFC− rsFC of the attention state (asFC) from

rest, and in deviations ∆msFC = msFC− rsFC of the memory state (msFC) from rest.

As with groupings in N , we can similarly partition state-speci�c FC into three groups:

FCPP , FCNN , and FCPN .

As described in Chapter 4, we will again refer to the average 〈O〉 of a given measure

O, where O takes on values of SC or FC. When computed across subjects, we reference

the quantity with the subscript s (e.g. 〈O〉s), and when computed across connections

within a single subject, we reference the quantity with the subscript c (e.g. 〈O〉c).

6.2.2 Selection of Robustly-Connected Region Pairs

To identify robust relationships between SC and FC, we select the subset of PP, NN,

and PN region pairs that are linked by one or more white matter tract in at least 80% of

subjects. �is equates to selecting region pairs with a consistency 〈C〉s greater than a
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threshold value 〈C〉T = 0.8, where C is a subject-speci�c binary number that quanti�es

the presence of absence of one of more white matter tract linking two brain regions (as

initially de�ned in Chapter 4). For the subset of task-related region pairs above this

consistency threshold, we construct representative and subject-speci�c brain networks

by respectively measuring subject-averaged and subject-speci�c strengths of SC and FC

between consistently-connected region pairs.

�is selection method is a variation of the methods used in Chapter 4, where region

pairs were selected via the structural and nonstructural measures N̄ and 1/d. �ese

indirect measures of consistency were shown to be related to but distinct from the direct

consistency 〈C〉s. �e selection of region pairs via purely structural and nonstructural

measures was important for ensuring that no functional or structural bias was introduced

into the respective analyses of SC→ FC and FC→ SC. Here, we seek to understand

how SC constrains relationships between FC across brain states, but we do not assess the

reverse process of identifying constraints on SC imposed by FC. We can therefore use a

purely structural measure to select region pairs, and we choose to use the direct measure

of consistency 〈C〉s.

�e observed relationships between SC and FC presented in the remainder of the

chapter are robust to the speci�c choice of 〈C〉T used to select region pairs (see Section

6.6). Furthermore, although the 2132 connections selected via this thresholding process

comprise a small fraction of the possible 179700 connections between 600 ROIs, this

number accounts for roughly half of all connections measured within any given subject.
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averages of these distributions can be characterized by an angular component θ and a radial
component r, which mark the positions of each distribution in the phase-like space de�ned by
〈∆fPP −∆fNN 〉s and 〈∆fPN 〉s.

6.3 Functional Connectivity of Task-Based Networks

In assessing the strength of functional interaction between TP and TN regions, we

expect to observe di�erences in the strength of functional correlation measured within

versus between networks. As TP and TN networks were de�ned based on strong resting-

state correlations within but anti-correlations between regions within each network, we

predict that PP and NN connections will exhibit stronger rsFC than PN connections.

Furthermore, given that TP and TN regions are also known to respectively activate and

deactivate during attention tasks, we predict that PP connections will show more pro-

nounced changes 〈∆asFC〉s than NN and PN connections. To evaluate these predicted

relationships, we compare shi�s in the complementary cumulative distribution functions
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(cCDFs) of 〈rsFC〉s, 〈∆asFC〉s, and ∆msFC〉s produced by PP, NN, and PN connec-

tions relative to the distribution produced by the remaining bulk of PO, NO, and OO

connections.

We �nd that PP and NN connections produce similar distributions of functional

connectivity to one another, but their relationship to the distribution of PN connections

varies between resting, attention, and memory states (Figure 6.2a-c). In the resting state,

correlations within networks are stronger than correlations between networks, a result

that is consistent with the de�nition of TP and TN networks based on strong resting-state

correlations within each network and anti-correlations between networks (Figure 6.2a).

In the attention state, we see similar changes in the strength of correlations within and

between networks (Figure 6.2b), while the memory state is marked by an increase in the

strength of correlation between relative to within networks (Figure 6.2c).

In comparing the leading edges of each distribution, we see task-dependent di�erences

in the types of connections that support the strongest correlations. To assess di�erences

in the relative contribution of PP, NN, and PN connections to strong functional correla-

tions, we apply sliding thresholds to the resting-state (rsFCT), attention-state (∆asFCT),

and memory-state (∆msFCT) distributions of functional connectivity. For the set of

connections above these sliding thresholds, we compute the change in the fraction 〈∆f〉s

of connections that link a task-positive with a task-negative region (〈∆fPN)〉s versus the

fraction that link two task-positive (〈∆fPP 〉s) and two task-negative (〈∆fNN〉s) regions,

where ∆f is given by:
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∆fab =
Nab (FC > FCT)

Nall

− Nab

Nall

, (6.1)

and ab = {PP,NN,PN}. �e quantity Nab/Nall speci�es the baseline values

fPP = .31, fNN = .13, and fPN = .05 computed from the full set Nab of unthresholded

connections.

We �nd that increasingly strong rsFC is supported by an increasingly large contribu-

tion from NN connections and a decreasingly small contribution from PP connections

(Figure 6.2d), and we �nd that the reverse is true in the attention state (Figure 6.2e).

Furthermore, we see an increase in contribution of NN connections to ∆msFC (Figure

6.2f), suggesting an overlap between the resting and memory states. We additionally �nd

task-dependent changes in the contribution of connections that couple task-positive and

task-negative regions. In particular, increasingly strong rsFC is marked by a consistent

decrease in contribution from PN connections, while increasingly strong ∆msFC is

marked by a consistent increase in their contribution.

Comparison of the relative contributions from PP, NN, and PN connections reveals

that two quantities, 〈∆fPN〉s and 〈∆fPP −∆fNN〉s, vary in a state-dependent manner.

�e �rst quantity measures the relative contribution of PN connections to supporting

strong correlations and can be understood as the strength of coupling between TP and

TN networks. �e second quantity measures the di�erence in contribution from PP

versus NN connections to supporting strong correlations and can be understood as

the degree of separation between TP and TN networks. In this manner, 〈∆fPN〉s and
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〈∆fPP −∆fNN〉s represent the functional integration versus segregation between TP

and TN networks.

Evaluation of the space de�ne by 〈∆fPN〉s and 〈∆fPP −∆fNN〉s reveals a striking

separation between brain states. �is is shown in Figure 6.3a, where the overlap of all

distributions at the center point marks the bulk properties, and deviations from the

center point mark changes in 〈∆f〉s as a function of increasing FCT. Biasing toward

stronger correlations by increasing FCT incrementally decreases the number of regions

in consideration, resulting in the observed jitter at the edges of each distribution.

Importantly, this representation highlights the speci�c TP and TN interactions that

support and distinguish each state; namely, (i) the resting state shows increased TN activity

and decreased TP-TN coupling, (ii) the attention state shows increased TP activity and

increased TP-TN coupling, and (iii) the memory state shows increased TN activity and

increased TP-TN coupling.

�e quantities 〈∆fPN〉s and 〈∆fPP − ∆fNN〉s can be viewed as a mapping of a

“phase space,” whereby the distribution averages 〈∆fPN〉s,c and 〈∆fPP −∆fNN〉s,c can

be characterized by a radial component r:

r =
√
〈∆fPN〉2s,c + 〈∆fPP −∆fNN〉2s,c (6.2)

and an angular phase θ:

θ = arctan

( 〈∆fPN〉s,c
〈∆fPP −∆fNN〉s,c

)
, (6.3)
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where θ is measured from the horizontal axis counterclockwise to +180◦ and clock-

wise to−180◦, as shown in Figure 6.3b. In this representation, the resting state is character-

ized by a negative phase angle θR < −90◦, for which the projections 〈∆fPP −∆fNN〉s,c

and 〈∆fPN〉s,c onto the x and y axes are both negative (strong NN interactions and

reduced TP-TN coupling). �e attention state is characterized by a positive phase angle

0 < θA < 90◦, for which the projections onto thex and y axes are both positive (strong PP

interactions and increased TP-TN coupling). Finally, the memory state is characterized

by a positive phase angle θM > 90◦, for which the projection onto the x axis is negative

(strong NN interaction) but onto the y axis is positive (increased TP-TN coupling). �e

angular component therefore characterizes the relative change in interactions within

versus between networks, while the radial component characterizes the absolute strength

of these interactions.

In addition to providing an objective measure of phase-space relationships, the vari-

ables (rR, θR), (rA, θA), and (rM , θM) enable us to compare the state-dependent prop-

erties of the representative brain network, assessed here, with subject-speci�c brain

networks, to be assessed in the following section.

6.4 Individual Variability in Phase Relationships

Given the pronounced separation between states observed in the representative brain

network, we investigate the extent to which subject-speci�c brain networks show similar

features of “phase separation.”
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Figure 6.4: Individual Variability in Phase Relationships. Far upper le�: subject-speci�c
relationships between resting (rR, θR), attention (rA, θA), and memory (rM , θM ) states, shown
respectively in black, tan, and brown. Individual subjects, marked by sets of three phases, show
signi�cant variability in phase relationships. Far lower le�: angular components θR, θA, and θM
of subject-speci�c phases. A majority of subjects show that the resting state is localized within
the lower half plane(θ < 0), while attention and memory are localized about the horizontal
axis (θ ∼ 0◦,±180◦). Middle le�, middle right, far right: remapping of subject-speci�c phase
relationships by projecting θa onto θb (middle le�), ∆θab = θa− θb onto ∆θbc = θb− θc (middle
right) and θa onto ∆θbc (far right), where {a, b, c} are cyclical permutations of R, A, and M .
Below each remapping is a subject-speci�c example of the phase remapping, where each subject
is represented by a triangle whose vertices mark the remapped phases. Subjects show a striking
degree of order in the relationships between absolute phases (middle le�), between relative phases
(middle right), and between absolute and relative phases (far right).

To compare phase-space relationships across subjects, we compute subject-speci�c

distributions of 〈∆fPP 〉, 〈∆fNN〉, and 〈∆fPN〉 across increasing values of rsFCT. For

each subject, we compute the distribution averages 〈∆fPN〉c and 〈∆fPP − ∆fNN〉c,

from which we can de�ne subject-speci�c values of (rR, θR), (rA, θA), and (rM , θM).

Comparison of phase relationships across subjects reveals signi�cant variability in

both the angular and radial components of resting-, attention-, and memory-state phases
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(�gure 6.4). Isolating state-speci�c angular components shows that the resting state

tends to be localized in the lower half plane, for which the coupling between TP and TN

networks is reduced. �is behavior agrees with the de�nition of TP and TN networks

based on anticorrelations between networks observed in the resting state ([127]). In

comparison, the angular components of both the attention and memory states tend to be

localized around θ = 0◦,±180◦, for which there is a large functional separation between

TP and TN networks.

To isolate similarities in phase relationships across subjects, we perform three remap-

pings of the original phase diagram:

1. [(rR, θR), (rA, θA), (rM , θM)] −→ [(θR, θA), (θA, θM), (θM , θR)]

2. [(θR, θA), (θA, θM), (θM , θR)] −→ [(∆θRA,∆θAM), (∆θAM ,∆θMR), (∆θMR,∆θRA)]

3. [(θR, θA), (θA, θM), (θM , θR)] −→ [(θR,∆θAM), (θA,∆θMR), (θM ,∆θRA)]

where ∆θab = θa − θb, and ∆θ → ∆θ ∓ 360◦ if ∆θ ≷ ±180◦ �e �rst remapping

isolates absolute phase angles, the second remapping isolates relative di�erences in phase

angles, and the third remapping compares absolute and relative phase angles. All three

remappings are shown in Figure 6.4, where each individual is represented by a triangle

whose vertices are given by the coordinates in (1)-(3) above.

Despite the signi�cant variability observed in Figure 6.4a, we see that there is signi�-

cant order in the relationships between absolute and relative phase angles exhibited across

subjects. �is order is marked in Figure 6.4 (middle le�, middle right, and far right)
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relationships produced by the real brain show signi�cantly more organization that do null model
phase space relationships. �e real brain shows groupings of many individuals that show similar
relationships between absolute and relative phases, marked by the clustering of points with the
same color. In comparison, the null model shows signi�cant noise in the relationships between
relative and absolute phases, and there is no clustering of points of the same color.

by the large degree of clustering in points of the same color, and similarly in the largely

overlapping sets of triangles that link these clusters. �is order is particularly striking

when comparing relative phase di�erences between brain states, as shown in the middle

right of Figure 6.4. Together, these results show that there are probable con�gurations of

absolute phase angles, relative phase angles, and mappings between the two.

To con�rm that the observed order is not an artifact of our analysis techniques, we
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compare these remappings to those obtained from a null model in which TP, TN, and

OTH region labels are randomly reassigned to regions within our 600-ROI atlas. �ese

comparisons, shown in Figure 6.5, reveal that random reassignment of region labels

removes the observed structure in phase relationships. Under this reassignment, we no

longer see clustering of points of the same color, nor do we see as strong a degree of

overlapping sets of triangles linking these points. Similar results were achieved using

a null model in which the numbers of connections linking brain regions, rather than

region labels, were randomly reassigned.

6.5 Links between Phase-Space Groupings and Behavior

�e existence of structured relationships between resting, attention, and memory

states suggests that the shared features of these relationships may re�ect underlying

organizational principles that constrain both structural and functional connectivity.

Furthermore, the observation of multiple clusters of subjects, each exhibiting di�erent

phase-space relationships, raises the question as to whether these clusters relate to external

measures of behavioral performance. Given that the existence of phase space groupings

can only be uncovered by assessing large numbers of subjects, it may additionally be

possible to identify regions of phase space that, being unoccupied by healthy individuals,

are predictive of altered functional states.
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states, are further partitioned in Figures 6.8, 6.9, and 6.10.

6.5.1 Characterization of Phase-Space Groupings

In what follows, we detail the method by which we separate groups of subjects with

similar phase relationships. As we see the most striking order in the relative phases

between brain states (Figure 6.4), we �rst group subjects based on the relative proximity

of di�erent brain states to one another:

Primary Grouping: Relative Proximity of Brain State Phases

(1) |∆θAM | < {∆θRA,∆θMR}

(2) |∆θMR| < {∆θRA,∆θAM}

(3) |∆θRA| < {∆θAM ,∆θMR}
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�ese groups are shown in the right column of Figure 6.6. We see that a majority

(55 of 84) of individuals fall into the �rst grouping, for which attention and memory

states are closest in phase space. �e next most populous group is that for which rest and

memory are closest (18 of 84), and the least populous is that in which rest and attention

are closest (11 of 84). In a broad sense, this suggests that, within this representation of

TP and TN interactions, the two task states are most similar, while attention and rest (the

two states used in [127] to de�ne TP and TN networks) are the most dissimilar.

Groupings (1), (2), and (3) listed above are characterized by the relative phase angle

∆θAM , ∆θMR, and ∆θRA, respectively. We further partition each group based on rela-

tionships between the remaining two relative phases ([∆θRA,∆θMR], [∆θRA,∆θAM ],

and [∆θAM ,∆θMR] for groups (1), (2), and (3), respectively). We distinguish groups

by the sign [+,−] of these relative phases. Because relative phases are de�ned on the

interval [−180◦, 180◦], the sign of each relative phase characterizes the arrangement of

the two closest phases relative to the third phase (see Figure 6.7). �ese groups are given

by the following relationships for a pair of relative angles [∆θαβ,∆θβγ]:

Secondary Grouping: Con�guration of Brain State Phases

(a) [∆θαβ,∆θβγ] = [+,−], [∆θαβ > 0,∆θβγ < 0]

(b) [∆θαβ,∆θβγ] = [−,+], [∆θαβ < 0,∆θβγ > 0]

(c) [∆θαβ,∆θβγ] = [+,+], [∆θαβ > 0,∆θβγ > 0]

(d) [∆θαβ,∆θβγ] = [−,−], [∆θαβ < 0,∆θβγ < 0]
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where (α, β, γ) is any permutation of (R, A, M). Figure 6.7 shows a schematic of these

de�nitions. We refer to the groups (a) and (b) as “bent” con�gurations because all three

phases lie within one half plane, and we refer to groups (c) and (d) as “split” con�gurations

because there is no half plane that contains all three phases. �ese secondary groups

(a,b,c,d) are shown in Figures 6.8, 6.9, and 6.10 for the primary groups (1), (2), and (3).

Despite the wide range of phase relationships that could be realized under these broad

groupings (see, e.g., Figure 6.7), subjects grouped based on relative phase relationships

tend to also show similarities in absolute phases. �is is a re�ection of the structure

observed in Figure 6.4e. For example, the most populated grouping G1a (Figure 6.8)

could be achieved by the two di�erent con�gurations shown in the le� column of Figure

6.7. �ese two con�gurations would be characterized by the localization of rest in the

lower le� versus lower right quadrants. However, we see that subjects in grouping G1a

primarily exhibit one type of con�guration in which rest is localized in the lower right

quadrant and attention and memory are bent toward the horizontal axis in the upper le�

quadrant (analogous to the con�guration in the lower le� panel of Figure 6.7).

6.5.2 Comparison of Behavioral Measures Across Groups

We can use the groupings enumerated above to assess whether subjects with similar

phase-space relationships show similar performance characteristics during behavioral

tasks. We focus on three performance measures taken for both the attention and memory

tasks: average reaction time (RT), d′ (“d-prime”), and a criterion switch score (CS).
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196



Average RT measures the average time between the appearance of a stimulus and a

subject’s response (via a button press) to that stimulus. �e measure d′ assesses perceptual

sensitivity, with higher values indicating higher sensitivity. Finally, CS measures strategic

�exibility in switching between decision making strategies, with higher values indicating

the ability to more readily switch strategies. A detailed discussion of these performance

measures can be found in [122].

We �nd that subjects exhibit signi�cant variability in both attention and memory

performance. Although it is possible to distinguish trends in the average performance

of subjects within di�erent groupings, the high variance in performance across subjects

undermines the signi�cance of such trends. �is may be a result of the limited number of

subjects in this study, and comparisons across larger sample sizes may reveal more reliable

relationships between phase space groupings and behavioral performance. However,

one notable group, G3a, deviates signi�cantly from the performance exhibited by the

remaining subjects. Figure 6.11 shows the values of RT, d′, and CS for group G3a relative

to the remaining subjects. �is group is characterized by slow reaction times, low percep-

tual sensitivity, and high strategic �exibility. Inspection of the raw phase relationships

(lower right of Figure 6.11) reveals that this group shows strong interactions between

TP and TN networks (vertical projections) and small separations between networks

(horizontal projections), suggesting that this combination of TP and TN interactions is

simultaneously detrimental to reaction time and perceptual sensitivity but bene�cial for

strategic �exibility.
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�e �nding that outliers in phase space also deviate signi�cantly in their behavioral

performance suggests that there are regions of phase space, or relationships between

phases, that are linked to altered functional states. Further characterization of these

relationships across a larger number of subjects, more performance measures, and genetic

or cognitive traits may better isolate these outlier regions.

6.6 Robustness to �resholding

In constructing the representative brain network for the comparison of TP and TN

networks, we �rst isolated region pairs that were consistently structurally connected

within 80% (〈C〉T = .8) of subjects. By varying this consistency threshold, we can

explore how phase relationships may change with more or less robust connectivity.

In a manner similar to that used in the previous chapter, we repeat our analysis of

the representative brain network across variations in the consistency threshold 〈C〉T . As

described in Section 6.3, we compute 〈∆fPP −∆fNN〉s,c, and 〈∆fPN〉s,c from 〈rsFC〉s,

〈∆asFC〉s, and 〈∆msFC〉s, which mark the phase-space positions of the resting, attention

and memory states.

Figure 6.12 shows these phase-space positions across variations in 〈C〉T , where arrows

indicate the direction of increasing 〈C〉T . We �nd that the observed separation between

brain states in the phase space de�ned by 〈∆fPN〉 and 〈∆fPP −∆fNN〉 is consistently

observed across all threshold values. �e averages of both the resting state and attention

state distributions move further from the origin with increasing 〈C〉T , while the average
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of the memory state distribution move closer to the origin. �is suggests that robust

connectivity facilitates a strong separation between rest and attention states, with memory

sharing features of both states.

6.7 Discussion

Relating structural connectivity and functional activity across brain states is crucial

for understanding how the brain utilizes the same architecture for the performance of

di�erent cognitive functions. Previous studies have been limited to resting-state or single-

task neural activity without knowledge of the underlying structural architecture that

supports this activity. Here, we developed a novel approach for relating both functional

activity and underlying structural architecture across cognitive states. We showed that

the relative numbers of connections mediating interactions within versus between task-

related networks di�erentially support strong state-dependent correlations.

�is study built upon the work presented in Chapters 4 and 5 to assess how the

inclusion of region-speci�c information impacted the analysis of structural and functional

connectivity. In addition to the structural measure of total tract number and the functional

measures of resting-, attention-, and memory-state FC, we identi�ed regions in our atlas

belonging to putative task-positive (TP) and task-negative (TN) networks identi�ed in

[127]. Inclusion of this information revealed that brain states di�er in the degree of

interaction within and between TP and TN networks, as de�ned by the relative number

of structural connections that support strong TP versus TN correlations.
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When probed across subjects, the phase space de�ned by these interactions shows

constrained relationships between cognitive states, suggesting that this space is re�ective

of underlying structural and functional organizational principles in the brain. By isolating

groups of individuals that share similar phase-space relationships, we can distinguish

common from rarely-achieved organizational principles, and we can ask whether these

principles relate to external measures of performance.

�e comparison of behavioral measures across groupings enabled the isolation of one

group of outliers whose phase-space relationships and behavioral performance deviated

signi�cantly from the remaining subjects. �is suggests that rarely-occupied regions of

phase space may be indicative of altered structural or functional organization that can

impact behavioral performance. A further characterization of these relationships across

di�erent behavioral and genetic measures could potentially be used to develop objective

diagnostic measures for altered functionality.

�e observed relationship between relative and absolute phases suggests that it may

additionally be possible to predict relationships between cognitive states using only

resting-state data. In combination with the observed relationship to behavioral measures,

this would have signi�cant implications for diagnosing conditions in which there is no

access to attention and memory data, such as in cases where subjects cannot adequately

perform directed tasks.

In summary, the observation of a constrained space of relationships between cognitive

states suggests that the bounds of this space are re�ective of common organizational
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principles in the brain. �e methods developed here for assessing this space provide

an objective approach for relating neural activity across cognitive states both within

and across individuals. Further application of these methods to the analysis of more

extensive behavioral and genetic traits may help identify signatures of altered structural

or functional brain organization.
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Chapter 7

Conclusion

“�e brain is the organ of destiny. It holds within its humming mechanism

secrets that will determine the future of the human race."

–Wilder Pen�eld, from �e Second Career, 1963

7.1 Overview

In concluding, we can return to the questions that motivated this study: what is the

brain doing, how is it doing it, and why? Given that the brain supports functionality

ranging from the blink of an eye to the debate of philosophical ideas, and given that it does

so in the presence of ongoing structural changes that occur during development, learning,

and aging, it is remarkable that such robust and coherent behavior is collectively produced

by billions of individual neurons. In an e�ort to understand this incredible system, we

have combined experimental, computational, and theoretical techniques to construct
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mappings between the structural organization of neural systems and their functional

capabilities. We explore these mappings across di�erent spatial and temporal scales, from

the small-scale interactions within networks of neurons to the large-scale interactions

between whole brain regions. �is integrative approach is advantageous for understanding

how the multiscale design of neural systems can support varied functionality and adapt

to an ever-changing environment.

Given the wide range of architectural and functional properties exhibited by neural

systems, however, it remains a signi�cant challenge to identify the structural features that

constrain functional performance across spatial and temporal scales. �is is a challenge

not only in studies of the brain, but also in a variety of complex interconnected systems

in which a balance between competing functions must be achieved within the constraints

of a single architecture. Probing neural structure and function, speci�cally within the

human brain, proves to be particularly di�cult given the inherent complexity of neural

systems and the experimental and computational limitations in probing this complexity.

It is therefore crucial to develop multimodal approaches for identifying relevant structural

and dynamical features that constrain neural system behavior across di�erent levels of

resolution.

7.2 Synopsis

�is work developed novel approaches for relating structural system architecture

and functional activity that can be broadly applied to a range of arti�cial and biological
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systems. Traditional studies of system design o�en focus on understanding, and when

applicable, optimizing the behavior of speci�c structural motifs for the performance of

single functions. Such approaches have been very useful for identifying the “what” of

neural processing, but they have provided limited insight into the “how” and “why” of

neural circuit design. By comparing the balance of di�erent functionalities supported by

a range of di�erent structural designs, we have identi�ed functional advantages and disad-

vantages of di�erent architectures that provide insight into underlying design principles

that govern the complex behavior of neural systems.

7.2.1 Forward Modeling of Small-Scale Arti�cial Networks.

Our studies of small-scale neural networks identi�ed tradeo�s in performance that

arise from variations in network topology. We explored the ability of parallel and layered

network architectures to produce adaptable representations of external information

during sequential learning and memory tasks. We found that layered networks produce

coarse representations of information that are less susceptible to interference from new

information. In comparison, parallel networks produce highly accurate representations of

information that can be more easily disrupted. We linked these di�erences in performance

to network topology by characterizing the underlying error landscapes that govern the

search for solutions. �e observed di�erences in local landscape properties suggest that

further landscape characterization, via methods such as nudged elastic band theory, could

provide insight into the ability of a network to dynamically adapt its representation of
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external information.

In extensions to this work, we explored the degree to which our results were limited

by the properties of small networks. Our preliminary �ndings suggest that the reduced

subspace of solutions produced by one- and two-layer networks may be related through

linear approximations of nonlinear sigmoidal transfer functions. �e construction of a

recursion relation, from which the behavior of an `-layer network could be predicted from

the behavior of an (`− 1)-layer network, would signi�cantly impact our understanding

of the capabilities and limitations of larger, composite networks.

We further explored the extension of these computational models to more complex

training functions. �e extension from one-dimensional to two-dimensional training

functions signi�cantly increases the complexity of the information that can be presented to

the network and allows for the comparison of di�erent methods of information encoding.

In exploring how performance is shaped by network sensitivity to di�erent types of

information, we found that sensitivity to spatial information improves the speed with

which networks learn new information. When implemented nonuniformly throughout

modular and nonmodular network structures, we additionally found that performance

was sensitive to the arrangement of modules relative to the arrangement of spatial versus

nonspatial node sensitivities. �ese results suggest several directions for future research.

Further characterization of the speci�c spatial features to which networks are sensitive

will provide a better understanding of the external environmental factors that constrain

network performance. Exploring internal versus external structure-function relationships
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could be particularly informative in the context of evolution and development, during

which the network structure dynamically adapts during learning to take advantage of

speci�c environmental features.

7.2.2 Inverse Analysis of Large-Scale Human Brain Networks

We complemented our studies of small scale computational networks with large-

scale analysis of human brain networks, which provided direct evidence of constrained

relationships between structural architecture and functional performance in biological

systems. We related structural connectivity, de�ned based on the physical properties of

white matter tracts as inferred from DTI measurements of water di�usion, to functional

connectivity, de�ned by the strength of correlated �uctuations in energy consumption as

inferred from fMRI measurements of BOLD activity. By comparing these relationships

across 84 subjects and across three cognitive states, we identi�ed robust relationships

between the task-dependent strength of functional correlation between brain regions

and the length, number, and spatial location of white matter tracts linking these regions.

We further showed that functional correlation strength could in turn be used to infer the

structural properties of the underlying anatomical architecture. �e observed relationship

between long intra-hemispheric connectivity and task-dependent functional activity

suggests that the properties of these connections may be predictive of task-performance.

In extensions to this study, we con�rmed that the observed relationships between

structural and functional connectivity are robust to variations in our analysis techniques.
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We discussed the sensitivity of our results to the inclusion of inconsistent connectivity,

which altered the apparent length of connections inferred from functional correlations.

We suggested methods for correcting for this sensitivity both in a representative case

and a subject-speci�c case. Beyond isolating robust relationships between structural and

functional connectivity in the human brain, this work highlighted several analysis tools

that can be applied more broadly to network systems. �e construction of representative

brain networks from consistently-connected regions pairs within subject-speci�c brain

networks allows for the comparison of properties that are representative of the entire

group of subjects to those properties that are speci�c to individual subjects. �e applica-

tion of structural and functional thresholds further enables the isolation and comparison

of di�erent groups of connections.

Our �nal study, which extended the observed structure-function relationships in

human brain networks, assessed constrained relationships between cognitive states. By in-

cluding information about the anatomical regions involved in structurally-mediated func-

tional interactions, we showed that interactions within and between putative task-related

networks di�erentially support and distinguish between strong resting-, attention-, and

memory-state correlations. By mapping structure-function relationships onto a phase-

like space de�ned by these interactions, we identi�ed phase variables that characterize

di�erent cognitive states. Remarkably, comparison across individuals reveals constrained

relationships between phase variables, thereby enabling us to group individuals based on

these relationships. We related these groupings to behavioral performance measures, and
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we were able to identify one set of subjects whose abnormal phase-space relationships

was indicative of abnormal behavioral performance. In future work, we will probe more

extensively the relationship between phase-space variables and behavioral and genetic

measures. Identifying mappings between internal brain-state properties and external

behavioral measures may help predict task-driven brain activity or diagnose individuals

with altered brain functionality.

7.2.3 Conclusions

Together, the combined study of small-scale arti�cial networks and large-scale bi-

ological networks enables the identi�cation of structural properties that constrain and

facilitate functionality across a wide range of spatial and temporal scales. Forward mod-

eling approaches, such as those used to study feedforward neural networks, enable us to

systematically control structural features in order to isolate functional capabilities and

limitations of computational networks. By probing these relationships across a range

of small network topologies, we gain insight into the performance of larger composite

structures in which statistical studies of performance would be intractable. Conversely,

inverse approaches, such at the MR imaging used to infer structural and functional

connectivity in the human brain, enable us to identify the organizational principles that

govern the functionality of large-scale biological systems. By assessing relationships be-

tween anatomical architecture and functional interactions in large-scale neural systems,

we gain insight into the biological principles that constrain small-scale neural systems.
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7.3 Future Directions

Beyond the ability to connect relevant neural phenomena across scales, we are faced

with several fundamental challenges to understanding the structure and function of

neural systems. In particular, one striking feature of neural systems is their ability to

simultaneously process spatial and temporal features of sensory stimuli, such as the

spectral and temporal components of speech or the position and velocity of moving

objects in dynamic visual scenes. Although neuronal processing relies on both dimensions

of sensory information, relatively little is known about the interaction between space and

time within neural circuits. Furthermore, it is well understood that neural systems must be

both robust and adaptive to growth, degradation, and noise. However, the mechanisms

that enable neural systems to maintain functionality despite ongoing structural and

dynamical changes are not well understood.

While the approaches discussed here can be appropriately modi�ed to address these

questions, more sophisticated modeling frameworks may help bridge the gap between

small-scale arti�cial networks and large-scale biological networks. Models such as liquid-

state machines and state-dependent networks rely on time-dependent neuronal prop-

erties, such as short term synaptic plasticity, to provide transient memory traces that

interact with external stimuli to enable high-dimensional spatiotemporal representations

[129]. Within these frameworks, structural properties of anatomical �ber pathways (as

inferred from DTI) could be used to inform arti�cial network connectivity, which could

in turn be systematically altered to predict large-scale functional activity (as measured via
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fMRI). Together, this would enable the study of interactions between system architecture,

adaptability, and robustness to noise.

7.3.1 Structural Regularity, Growth, and Degradation

Structural regularities, such as hierarchical [13] and modular [12] motifs, have been

identi�ed across a range of spatial scales and have been linked to dynamical properties

such as the generation of nested rhythms [130] and a reduction in synchronization time

[131]. Dynamic changes in connectivity, such as the growth observed during neurogenesis

and dendritic spine formation [66] and the degradation associated with aging and lesion

formation [69], can similarly have profound a�ects on functionality. However, the role

of static and dynamic connectivity in facilitating spatiotemporal processing is not well

understood.

Future work could explore the extent to which network topology alters the interaction

between external stimulus and internal network dynamics, thereby enabling �exible repre-

sentations of spatiotemporal stimuli. Consideration of the temporal dynamics produced

by di�erent static topologies could provide insight into the e�ects of structural growth

and degradation. Statistical mechanical techniques, such as the sloppy model framework

used to extract information from systems with many poorly-known parameters [1], could

help identify the internal degrees of freedom most important for controlling dynamical

features such as oscillation frequency or time to synchronization. Studying the topolog-

ical localization of these degrees of freedom may reveal speci�c structural motifs that
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maintain higher sensitivity to spatial or temporal features of the external stimuli. �is

could provide insight into the structural underpinnings of functional specialization, such

as the specialization observed in orientational selectivity domains in the visual cortex.

Dynamic changes in structural (e.g. adding or removing connections) and tempo-

ral (e.g. locally degrading neuronal output) network features could further impact the

representational capabilities of neuronal systems. If di�erent topological motifs reveal

distinct response characteristics, then localized perturbations may have drastically di�er-

ent e�ects depending on the location or timing of perturbations. In particular, di�erent

network topologies may di�er in how they dynamically compensate for local degradation

or incorporate new growth. Information theoretic approaches could be used, for example,

to determine how the location and timing of local perturbations alter nonlocal informa-

tion exchange. Identifying relationships between local fragilities and global robustness is

crucial for understanding development and evolution in neuronal systems.

7.3.2 Coevolution of Plasticity and Topology

Synaptic plasticity mechanisms, such as synaptic scaling, spike timing dependent

synaptic plasticity, and synaptic redistribution, facilitate adaptive responses to external

stimuli [63]. �ese mechanisms are incorporated into network models via learning rules

that modify synaptic strengths as a function of dynamic activity within the network.

Recent theoretical studies have begun to investigate learning rules that may facilitate the

creation of spatiotemporal representations of external stimuli (e.g. [132]). However, the
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relative impact of di�erent learning rules is not understood, particularly when embedded

in networks with complex and dynamic connectivity. Given that plasticity mechanisms

evolved alongside the structural regularities observed in the brain, plasticity is likely

dependent on the structure of the network in which it is embedded.

Future work could investigate the extent to which synaptic plasticity rules take advan-

tage of speci�c structural motifs in order to appropriately shape the interaction between

internal and external dynamics. By considering learning rules that are sensitive to both the

underlying structure and dynamic changes in connectivity, such as activity-dependent

rewiring rules [78], future work could explore the interaction between structurally-

sensitive plasticity, topology, and dynamics. In particular, plasticity may be di�erentially

sensitive to local versus global structural motifs and activity patterns. Given that the role

of long-term plasticity in spatiotemporal processing is not well understood, future work

could additionally consider learning rules that vary in temporal sensitivity.

7.3.3 Physical Embedding and Scalability

�e study of topological interactions purposefully neglects the constraints imposed

by physical embedding. Given that neuronal systems evolved within these constraints,

however, physical embedding plays an important role in the cost, e�ciency, and scalability

of neural architectures [12]. Importantly, ideal topologies may not be realizable when

physical constraints are taken into account. Furthermore, even if these topologies are

achievable in small networks, scaling in size may provide additional constraints on the
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space of possible network motifs and the resulting network dynamics. In addition to

illuminating design constraints, the processes of physically embedding and scaling enable

more direct comparison of these models with experimental data such as the di�usion

tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) of large-scale

structural and dynamical features of the brain.

Multi-scale models of emergent dynamic phenomena in neural systems could be

used to probe the e�ects of physical embedding and scaling. Local variations in length

and density of connections, for example, could disrupt synchronization patterns and

alter transmission of information through the network. Physical constraints will also

impact plasticity-dependent growth processes and rewiring schemes. Developing meth-

ods for appropriately coarse-graining structural and dynamical features is crucial for

understanding behavior across the huge range of spatial and temporal scales observed

within neuronal systems.

7.4 Outlook

�e combination of forward modeling approaches and inverse data-driven tech-

niques is powerful for studying a wide range of systems in which experimental access to

mechanistic interactions is limited. �is is particularly true of the human brain, where

direct access to neural activity is only possible in severe medical cases. Inverse imaging

techniques enable the reconstruction of structural and functional interactions from spa-

tiotemporal images of the brain. Similarly, in vitro or in vivo measurements of neuronal
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activity, largely limited to animal studies, can be used to develop mechanistic models of

neuron-level interactions that can in turn be used to predict neural activity over coarser

spatial and temporal scales. �e interaction between these two approaches, forward

modeling and inverse analysis, is crucial for understanding how neurons, as the building

blocks of the brain, can support such a vast array of functionalities across scales ranging

from individual cells to whole brain behavior.

Beyond understanding the relevant structural mechanisms that support and con-

strain functionality, the study of structure-function relationships in neural systems has

important applications in the �elds of bio-engineering and medicine. Arti�cial neural

networks lie at the interface between biological and computational systems and can

therefore inform the design of machines that maintain aspects of biological functionality,

including robotic systems that must perform tasks in dangerous environments, prosthetic

human-machine interfaces, and medical tools for invasively probe living systems with

minimal biological interference.

In addition to the technological applications, knowledge of structure-function re-

lationships has important medical applications. As changes in both small-scale and

large-scale anatomical properties have been linked to neurological disorders, the ability

to predict the functional consequences of structural disruptions is crucial for developing

a mechanistic understanding of altered cognitive states. Furthermore, due to an inability

to objectively characterize neurological disorders, diagnoses of such disorders are o�en

made via personal interview. A characterization of structural and functional brain orga-

216



nization is therefore crucial for reliably identifying and distinguishing between di�erent

neurological disorders. Importantly, the work highlighted here has the potential to help

distinguish the structural or functional signatures of healthy from unhealthy individuals

and predict the functional impact of changes in structural organization.

With the rapid development of new experimental techniques for imaging the structure

and function of neural systems, this is an exciting time for neuroscience research (espe-

cially for rogue physicists entering into the �eld). Given the high degree of detail achieved

by many of these new measurements, it will be important to develop the appropriate

quantitative tools for describing and coarse-graining relevant structural and dynamical

features of neural systems across varying scales of resolution. �e complementary use

of theoretical modeling and data-driven analysis provides one approach for developing,

modifying, and evaluating relationships between structural and functional interactions in

both arti�cial and biological network systems. Together, such approaches will inform our

understanding of the structural mechanisms that constrain functionality and may further

enable the prediction of functional consequences arising from structural disruptions.

In the years to come, it will remain a signi�cant challenge to connect the function of

the neuron to the function of the brain, let alone to describe the mechanisms underlying

conscious behavior. Yet, the mere ability to ask these questions is a testament to the utility

of neuroscience research, to the unparalleled capabilities of the brain itself.
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