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Abstract—Structural configuration drives functionality in a
range of different natural and artificial information processing
systems. In this study, we use feedforward neural networks
to evaluate the impact of structural variations on the ability
of a network to learn and retain representations of external
information. Performance is evaluated by statistically analyzing
the error in the representations produced by parallel and layered
networks during supervised, sequential function approximation.
By varying the initial network state and the time given to learn
the information, we identify tradeoffs between configurations
that optimize for the best versus worst case scenarios and for
the production of accurate versus retainable and generalizable
representations of information. We show that these tradeoffs
are maintained in larger networks and for variations in the
information presented to the networks. By characterizing the
curvature, depth, and participation of network connections about
local error landscape minima, we find that variations in landscape
structure give rise to the observed tradeoffs in performance.
Consistently deep, narrow minima enable parallel networks to
produce highly accurate solutions at the cost of more frequent
failure in retention and generalizability. In contrast, variability
in the depth and curvature of local minima enables layered
networks to produce coarse but generalizable solutions at the cost
of hindering consistent accuracy. Identifying structural drivers
of functional performance is crucial for understanding both
successes and limitations of information processing systems.

I. INTRODUCTION

Structural configuration plays a crucial role in determining

the functional performance of both artificial and biological

information processing systems. For example, the structure

of artificial systems can be carefully constructed [9], [10] to

efficiently and accurately perform a specific function. Simi-

larly, biological neuronal networks display a range of different

structural motifs that enable the performance of disparate

functions [4], [5].

In systems that must balance competitive processes, such

as flexible learning and stable memory, variations in struc-

tural configuration may reveal functional tradeoffs in perfor-

mance. We use feedforward neural networks, for which both

the network structure and the external information can be

precisely controlled, to systematically evaluate the error in

representations of information produced during supervised,

sequential one-dimensional function approximation. Our ap-

proach, however, is very different from studies that seek the

“optimal” network structure to accurately perform a single

task; rather, we identify structural features that impact learning

and memory performance. Across a range of parallel and

layered topologies, we find inherent tradeoffs in network func-

tion that arise solely from variations in underlying structure.

These tradeoffs include optimization for best versus worst

case scenarios and optimization for producing accurate versus

retainable and generalizable representations of information.

In the remainder of the paper, we discuss the extent to which

network configurations differ in their ability to both learn

and retain information. Additional details, methodological

considerations, and applications to neuronal systems can be

found in [6].

II. MODEL

We evaluate the performance of feedforward, backpropa-

gation (FFBP) artificial neural networks for the task of su-

pervised, sequential, one-dimensional function approximation.

The construction of our network model is consistent with

standard FFBP neural network models [17]. We consider the

five distinct topologies shown in Figure 1a. Each network

has 12 hidden nodes arranged into h layers of ℓ nodes per

layer. Nodes in adjacent layers are connected via variable,

unidirectional weights. Interlayer connectivities were chosen

in order to roughly maintain the same total number of ad-

justable parameters per network, Np, noted in Figure 1a.

All networks are constructed using identical nodes with

sigmoidal transfer functions s(x) = 1/(1+e(−x)) and variable

thresholds θ. The output y = s(
∑

p=1 ωpxp− θ) of each node

is a function of the sum of its inputs xp weighted by the

variable connection strengths ωp. Representing the threshold as

θ = ω0x0, where x0 = 1, allows us to organize all adjustable

parameters into a single, Np-dimensional weight vector ω⃗.

During training, each network is presented with a train-

ing pattern of Nd pairs of input xd and target yd values,

denoted (x⃗, y⃗). The set of variable weights ω⃗ is iteratively

updated via the Polak-Ribiere conjugate gradient (PRCG)

descent method with an adaptive step size [18], [19] in order

to minimize the output error E(ω⃗), a process theoretically

analogous to searching an error landscape for a local or global

minimum. We use online training, for which E(ω⃗) is the

sum of squared errors between the network output y(ω⃗) and

target output y calculated after all Nd points are presented,

E(ω⃗) =
∑

d(yd(ω⃗)− yd)2/2.
To simultaneously study learning and memory processes, we

present information to the network in two sequential training

sessions. We use a biologically-motivated pseudorehearsal

technique during the second training session to preserve mem-

ory of the first session. This involves retraining the network
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Fig. 1. Network configurations and training task. (a) Network configurations
considered in this study. Indicated below each network are the number
of hidden layers h and nodes per layer ℓ, the total number of adjustable
parameters Np, and the name by which we refer to the network. (b) Illustration
of the sequential learning task described in the text applied to the fan network.

with new information and a representation of the original

information [15]. The steps of this process are shown in Figure

1b and are described below:

First Training Session
Step 1.1 - Initialize: The network is initialized with ran-

domly chosen weights (“randomly initialized state”).

Step 1.2 - Train: Each network trains on six fixed “original”

points, (x⃗(o), y⃗(o)), that represent the information we wish

the network to remember in subsequent training sessions. The

values of these points, chosen to be evenly spaced in x and

random in y, are identical for all five networks. Each network

is given 105 iterations (“unlimited” training time) to generate

a functional representation fo of (x⃗(o), y⃗(o)).

Second Training Session
Step 2.1 - Sample: Each network begins the second training

session with the set of weights that generate fo (“sampled

state”). Each network randomly samples a pseudo-pool of

1000 buffer points from fo, subsets of which are used in the

following step to simulate memory rehearsal.

Step 2.2 - Re-train: The network is given a “limited” training

time of 500 iterations to re-train on six randomly chosen new

points (x⃗(n), y⃗(n)) and six buffer points (x⃗(b), y⃗(b)) randomly

selected from the pseudo-pool. We repeat the second training

session 1000 times to generate a distribution of solutions {fn}
of the new and buffer points.

III. RESULTS

We evaluate the performance of all five networks shown in

Figure 1a during the sequential training task. To ensure the

robustness of the results, we additionally evaluate the perfor-

mance of larger networks consisting of 18 nodes arranged into

configurations with (hxℓ = 1x18, 2x9, 3x6, 6x3, 9x2). Lastly,
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Fig. 2. Network solutions. Panels (a) and (b) show solutions produced
respectively by the fan and stacked networks, indicating the approximations
fo (solid curve) of the original points (point markers) and subsets of
approximations {fn} (dashed curves) of the new and buffer points. During
the first training session, the fan network achieves a lower error by fitting
the original points with a high order polynomial, while the stacked network
produces a higher error fit that averages over variation in the y-values of
the original points. Subsequent approximations {fn} retain the features these
features of fo. These results are consistent for larger networks, shown in
panels (c) and (d), and for permutations of the original points, shown in
panels (e) and (f).

we train the networks shown in Figure 1a using a permuted

set of values for the original points (x⃗(o), y⃗(o)).

A. Tradeoffs in Learning and Memory Tasks

Fan and Stacked Networks: We see qualitative differences

in the solutions fo and {fn} produced by the fan and stacked

networks, shown respectively in Figures 2a and 2b. As the

specific form of fo depends on the randomly initialized

network state (see the following section), we use solutions fo
that are representative of average network performance over a

range of randomly initialized states.

The fan network accurately fits all six original points with a

high order polynomial, while the stacked network produces a

coarser solution that averages over the variation in the original

points (solid curves in Figures 2a and 2b). Similar features

are observed using larger networks (Figures 2c and 2d) and

permutations of the original training points (Figures 2e and 2f).

Increasing the size of the networks results in more pronounced

features, such as the sharper kinks produced by the stacked

network (Figure 2d), in the solutions fo and {fn}. Training on

permuted original points results in a more accurate fit produced

by the fan as compared to the stacked network, which averages

over the variation in the permuted points (Figure 2f).

Intermediate Networks: We compute the errors {E(o)
n } and

{E(n)
n } in the solutions produced by all five networks shown

in Figure 1a, and we find tradeoffs in performance across the

full range of configurations.
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Fig. 3. Tradeoffs in network learning and memory. Panel (a) shows the best
successes and worst failures in memory measured with respect to solutions
{fn}, where increasing h/ℓ decreases the maximum value of {E(o)

n } at
the cost of increasing its minimum value. Panel (b) shows the average
performance during the first versus second training session, measured with
respect to solutions f0 and {fn}, where increasing h/ℓ increases E(o)

o

achieved during the first session but decreases ⟨{E(n)
n }⟩ and ⟨{E(o)

n }⟩
achieved during the second session. These results are consistent for larger
networks, shown in panels (c) and (d), and for permutations of the original
points, shown in panels (e) and (f).

In Figure 3a, we see a tradeoff between optimization for the
best case (maximization of success) versus worst case (mini-
mization of failure) scenarios in retention, whereby lower min-
imum values of {E(o)

n } correspond to larger maximum values.
Parallel networks maximize successful retention by producing
lower minimum error values, while layered networks minimize
failure in retention by producing lower maximum error values.

We furthermore find a tradeoff between performance during
the first versus second training sessions, as shown in Figure
3b. Lower values of E(o)

o produced during the first training
session correspond to larger values of both ⟨{E(n)

n }⟩ and
⟨{E(o)

n }⟩ produced during the second training session. This
suggests a tradeoff between the production of accurate versus
retainable and generalizable representations of information.
Parallel networks produce more accurate solutions during
initial training, while layered networks are better able to retain
and generalize coarser solutions during subsequent training.

These tradeoffs are observed in larger networks (Figures 3c
and 3d) and for permutations of the original points (Figures
3e and 3f).

B. Variable Training Conditions

To understand how tradeoffs arise from variations in struc-
ture, we probe the features of the underlying error landscapes
that each network must navigate during the training process.

Identifying Local Landscape Minima: To identify landscape
minima, we give each network “unlimited” training time to
produce representations of the original points. We repeat this
training process 500 times with different randomly initialized
states in order to generate a distribution of solutions {fo}.
The errors {E(o)

o } in these solutions then correspond to local
minima within the error landscape.

The cumulative distribution function (CDF) of {E(o)
o },

shown in Figure 4a, reveals that the fan network consis-
tently finds zero error minima. The intermediate and stacked
networks find both zero error and high error minima with
probabilities that respectively decrease and increase as h/ℓ
increases. The maximum error produced by the stacked net-
work, E(o)∗

o , corresponds to the minimum error achieved by
fitting the original points with a horizontal line.

The landscapes produced by larger networks show minima
of similar error values but of varying frequency than the
landscapes produced by smaller networks (Figure 4c). In
comparison, training on the permuted set of original points
generates error landscapes whose minima have different error
values than those produced using the unpermuted set of orig-
inal points. Because the values of the original points remain
constant under permutation, the stacked network produces the
same maximum error value of E(o)∗

o (Figure 4e).
These distributions were additionally used to generate the

results in the previous section, where the solutions fo shown
in Figure 2 were chosen because their error was representative
of the distribution averages in Figures 4a, 4c, and 4e.

Temporal Constraints: To investigate the effect of temporal
constraints, we train each network on the original points with
1000 sets of randomly chosen weights but terminate training
after 100 iterations. The increased number of randomly initial-
ized states allows us to better resolve the edges of the error
distributions shown in Figures 4b, 4d, and 4f.

Once training time is limited, all distributions shift toward
higher error values. The stacked network maintains the abrupt
cutoff near E(o)∗

o , while all other distributions extend far
beyond this value. Larger networks find minima with similar
error values to those found by smaller networks, but they vary
in the frequency with which they find these minima. Larger
layered networks more frequently produce linear solutions
near the cutoff E(o)∗

o , while larger parallel networks produce
more frequent catastrophic error values (Figure 4d). In com-
parison, training on the permuted set of original points reveals
that networks find minima more widely distributed in error but
show similar behavior near the edges of the distributions.

C. Dependence on Error Landscape Structure

To better understand differences in network performance in
the presence and absence of temporal constraints, we examine
the properties of local minima within the error landscapes
produced by the five networks shown in Figure 1a.
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Fig. 4. Distribution of error minima: CDFs of {E(o)
o } given (a) unlimited

and (b) limited training time for the five networks shown in Figure 1a. (a) The
fan network consistently finds zero error solutions, while all other networks
find solutions with a range of error values. The stacked network produces a
maximum upper limit of E(o)∗

o = 0.1131, which corresponds to fitting all
points with a horizontal line. (b) All distributions shift toward higher error
values. The stacked network maintains the hard limit at E(o)∗

o , while all
other networks produce error values that greatly exceed this value. These
results are consistent for larger networks, shown in panels (c) and (d), and
for permutations of the original points, shown in panels (e) and (f).

Characterizing Landscape Features: We characterize error
minima by the direction of highest local landscape curvature,
which specifies the combination of weight adjustments that
produces the largest change in error. We adopt the terminology
used in previous studies and refer to directions with high and
low curvature as stiff and sloppy, respectively [20], [21]. Stiff
and sloppy directions are found by diagonalizing the error
Hessian Hpq = ∂2E/∂ωp∂ωq evaluated at the set of weights
that produces the local error minimum. For computational
efficiency, we use the approximate Levenberg-Marquardt (LM)
Hessian [22], which agrees well with the stiffest eigenvectors
of H and is equivalent to H when a given model perfectly fits
data [20], [21]. The LM Hessian takes the form:

∂2E

∂ωp∂ωq
≈

ND∑

d=1

∂r(o)d

∂ωp

∂r(o)d

∂ωq
, (1)

where r(o)d = (yd(ω⃗)− y(o)d ) is the dth residual.
We diagonalize the LM Hessian about each of the 500

minima whose error values {E(o)
o } are shown in Figure 4a.

Each error minimum produces a set of Np eigenvalues λ
and normalized eigenvectors ξ⃗ , which give the degrees and
directions of stiffness in weight space. The following analysis

focuses on the stiffest eigenvector {ξ⃗(1)} as it most strongly
controls relevant behavior about each landscape minimum.

Motion along stiff directions may depend on the frac-
tion of network connections that must be significantly ad-
justed, a quantity measured by the participation ratio ρ(1) =∑

q (ξ(1)q )4 [23]. ρ(1) is a dimensionless quantity that ranges
from a delocalized minimum of 1/NP , for which all compo-
nents have equal weight 1/

√
NP , to a localized maximum of

1, for which a single component carries unit weight.
For the set of minima with error values {E(o)

o }, we quan-
tify {ρ(1)} and {λ(1)} of {ξ⃗(1)}. The covariances CE,ρ =

Cov(E(o)
o , ρ(1)) and CE,λ = Cov(E(o)

o ,λ(1)) in these quan-
tities are shown by the ellipses centered about their average
values in Figures 5(a) and 5(b), respectively.

Figure 5 highlights the variability in basin structure within
and between the networks. As h/ℓ increases, the variance in
{E(o)

o }, {ρ(1)}, and {λ(1)} increase. Higher variance leads
to lower confidence in predicting the success of the network,
but it also suggests that the network has more options when
exploring its error landscape. The orientations of covariance
ellipses for each landscape provide information regarding the
relationships between the error and depth of local minima and
the participation of network connections about these minima.
For a given value of h/ℓ, larger values of E(o)

o correspond
to smaller values of λ(1) and larger values of ρ(1). Higher
error minima therefore tend to be shallower and require the
adjustment of fewer weights.

Landscape Features and Successful Performance: Varia-
tions in landscape structure provide insight into the way each
network searches for solutions. In particular, fan solutions are
characterized by low error and participation ratio, indicating
that the fan network must adjust nearly all of its weights in
order to navigate zero error basins. In contrast, stacked solu-
tions span a range of error values. The corresponding basins
are characterized by a variety of eigenvalues and participation
ratios, indicating that the stacked network can navigate many
types of basins by adjusting variable numbers of weights.
Shallow, high error basins can be found by the stacked network
through the adjustment of few connections. Narrow, low error
basins, found by both the fan and stacked networks, require
fine tuning of a larger number of connections.

Landscape characteristics help explain the results shown
in Figures 3 and 4. Given unlimited training time, landscape
variability is disadvantageous and can prevent a network from
finding a low error minimum. Once time is limited, however,
landscape variability can be advantageous in preventing failure
by providing the network with high error, shallow basins
that can be navigated with the adjustment of relatively few
connections.

IV. DISCUSSION

In this study, we investigated the tradeoffs in learning and
memory performance that arise from structural complexity.
None of the configurations considered here simultaneously
mastered both learning and memory tasks, a sensitivity that
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For a given network, larger values of E(o)
o are often linked to smaller values

of λ(1) and larger values of ρ(1) .

may explain the large variability of architectural motifs evident
in large-scale biological and technical systems.

The parallel “fan” and layered “stacked” networks best illus-
trate the observed tradeoffs in performance. The fan network
produces accurate solutions at the cost of potential misrepre-
sentation when retaining and generalizing these solutions. In
contrast, the stacked network produces coarser solutions that
are more easily retained and generalized. Qualitatively similar
behavior is observed for larger networks and for permutations
of the original training points, suggesting that these tradeoffs
are not a consequence of the network size or specific choice
of external information but rather arise solely from variations
in structure.

Variations in underlying error landscape structure provides
insight into these differences in performance. Deep, narrow
landscape minima enable the fan network to produce con-
sistently accurate solutions given unlimited training time. If
time is limited, however, the fan network can fail to find these
minima and thereby produce highly erroneous solutions. In
contrast, variability in depth and curvature of error landscape
minima enable the stacked network to quickly find coarse so-
lutions in short amounts of time. If time is unlimited, however,
the presence of local minima can hinder the stacked network
from finding consistently accurate solutions. While parallel
configurations are often preferred in artificial neural network
studies due to their efficiency and accuracy, these results
suggest the use of layered configurations when performance
criteria favor generalizability and minimization of failure over
specificity and high accuracy.

The use of small networks and limited training time was cru-
cial to our analysis and allowed us to isolate the performance
tradeoffs that we expect to be maintained in larger systems.
In particular, the intermediate networks, which are structurally
composed of several adjacent stacked networks, share features
of both parallel and layered configurations. The performance
of these networks may help predict the behavior of larger com-

posite systems, such as cortical layers composed of structurally
distinct columns [1] or modular divide-and-conquer networks
[24]. In considering complex network systems, we anticipate
that underlying structural complexity will continue to impact
performance through functional tradeoffs.
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